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Abstract—This study presents a semisupervised learning ap-
proach using SVMs combined with fuzzy clustering for pixel
classification in RS images. The method iteratively updates the
training set by selecting informative unlabeled points through
three fuzzy clustering strategies—center-based, random, and
border-based selection. Experimental results on two remote
sensing datasets show that center-based selection significantly
enhances classifier performance compared to other strategies.
Applied to Kolkata SPOT and Mumbai IRS images, the proposed
approach improves classification accuracy, reduces redundancy
in unlabeled data, and achieves higher kappa values and cluster
quality indices than conventional SVM methods.

Index Terms—Support vector machine, Remote sensing satel-
lite images, Quadratic programming, Cluster based support
vector machine, kernel function.

I. INTRODUCTION

Image classification has long been central to remote sensing,
forming the basis for numerous environmental and socioeco-
nomic analyses. The success of classification depends on a
suitable system design and sufficient training samples [1]. Tra-
ditional classifiers such as Naı̈ve Bayes, k-NN, and SVM have
been widely applied, while advanced algorithms like decision
trees [2], ANNs [3], and evolutionary techniques [4] have
demonstrated improved performance [5]. Despite progress, en-
hancing accuracy in land cover extraction remains a challenge,
encouraging exploration of new learning approaches. A major
limitation in supervised classification lies in the scarcity and
quality of labeled samples, leading to ill-posed problems. To
address this, two main strategies have been explored: semisu-
pervised learning using both labeled and unlabeled data [6]
and SVMs. Semisupervised approaches have proven effective

for ill-posed classification problems by leveraging additional
unlabeled data to refine decision boundaries [7]. Building
on these ideas, the proposed CBSVM algorithm iteratively
selects informative unlabeled points through clustering, labels
them using SVM, and augments the training set to improve
classification accuracy.

A useful unsupervised method in learning is clustering that
divides the space of input into C clusters based on some
similarity measure in which the value of C may not known
beforehand. A clustering method partition the data set, which
is represented as: V (X) = C × n partition matrix of the
patterns in the set of n patterns. The partition matrix can be
denoted by V = [vcj], c = 1,2,. . . and j = 1, 2,. . ., n, where
vcj is the membership of xj to the cth cluster. Now vcj is used
to define the crisp and fuzzy clustering. To achieve crispness,
vkj is 0 or 1. In this case, any pattern can only be in one and
no more than one class. Where as in case of fuzzy theory, the
membership is :0 ≤ vcj ≤ 1.

The proposed approach integrates Fuzzy C-Means (FCM)
clustering with SVMs to improve accuracy. FCM estimates
membership values for unlabeled points based on Euclidean
distance, and points with high membership degrees are iter-
atively labeled using the trained SVM. These newly labeled
points are appended to the training set and removed from the
unlabeled pool until all samples are classified. The key idea is
to selectively incorporate informative samples while avoiding
redundant ones that may reduce accuracy. The proposed CB-
SVM was evaluated on two numerical remote sensing datasets
and two satellite images, showing improved generalization and
higher kappa, accuracy, and cluster quality indices compared
to the standard SVM.
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II. FUZZY CLUSTERING AND VALIDITY ASSESSMENT

FCM [8] is employed in associating the pattern xj to values
of membership to various clusters and certain validity indices
such as Xie-Beni (XB) [9] and I [10] indices.

A. FCM

FCM is applied to generate a matrix V (X) and minimizes
the measure.

Jm =

n∑
j=1

C∑
c=1

vmcjd
2(zc, xj), 1 ≤ m ≤ ∞ (1)

where n is the samples numbers,C is the number of clusters,
ucj ∈ {0, 1} is membership of the jth point in the c th
cluster and m is the exponent. With the increase in m, there
is additional fuzzification. d(zc, xj) is the distance between
point xj and the c th centre zc. The membership vci values of
all the un-labeled points are determined with the help of the
following equation:

vvi =
1∑C

j=1 (
d(zc,xi)
d(zj ,xi)

)
2

m−1

, for 1 ≤ c ≤ C, 1 ≤ i ≤ n

(2)
The cluster centres are then updated as follows:

zc =

∑n
i=1 v

m
ci xc∑n

i=1 v
m
ci

1 ≤ c ≤ C (3)

The algorithm converges when the cluster centers stabilize
between iterations. Upon convergence, each point is assigned
to a cluster for which it offers the highest value.

B. Xie-Beni index

The details of XB measure is available in [9].The objective
is to estimate minimum XB to achieve optimal cluster.

C. I index

The index I, is defined in [10]. Higher I shows better
solution.

III. SUPPORT VECTOR MACHINES

SVM operates by identifying the optimal hyperplane that
maximizes the margin of separation between two classes [11].
Although originally developed for binary classification, the
SVM framework has since been extended to solve multi-class
problems.

SVM solves the problem as follows.

J(w, ξ) =
1

2
∥w∥2 + C

n∑
i=1

ξi (5)

constrained to:

yi(ϕ(xi) ·w + b) ≥ 1− ξi, ξi ≥ 0; i = 1, 2, · · · , n. (6)

Here, w and b define the linear decision boundary in the
feature space that maximizes the margin. The slack variables ξi
allow for misclassifications on the training data, and the user-
specified parameter C controls classification error, as defined
in equation (5).

Minimizing the first term in Eqn. (5) reduces the model
complexity by controlling the VC-dimension, while minimiz-
ing the second term reduces the training misclassification
error [11]. This formulation leads to a constrained quadratic
programming (QP) problem.

The solution yields a decision function of the form:

f(x) = sgn

[
n∑

i=1

yiαik(x,xi) + b

]
(7)

with the kernel function k(., .) defined as.

k(x, xi) = < ϕ(x), ϕ(xi) > (8)

The corresponding data points xi associated with the
nonzero αi coefficients are called support vectors, and they
entirely define the decision function. The term K(x, x) rep-
resents a nonlinear kernel function. In this work, we employ
the RBF kernel, k(xi,xj) = exp(−γ||xi − xj||2), where γ is
a kernel parameter that controls the influence of each support
vector.

IV. CLUSTER BASED SUPPORT VECTOR MACHINE

Supervised algorithms require sufficient and representative
training data to establish accurate decision boundaries, but ac-
quiring such labeled data is often costly and time-consuming.
To address this, clustering can be used to select informative
unlabeled points, which are labeled and incorporated into the
training set . However, incorrect labeling may degrade accu-
racy, so points with low membership confidence are excluded.
In the proposed CBSVM, the Support Vector Machine (SVM)
is incrementally trained using both labeled and confidently
semilabeled samples. Fuzzy C-Means (FCM) clustering esti-
mates membership values vi providing labeling confidence and
enabling selection of points near cluster centers for inclusion
in the training set. This approach suppresses outliers, refines
class means, and adjusts the decision boundary to minimize
generalization error using both labeled and semilabeled data.
Experiments also compare random, border-based, and center-
based selection strategies on SPOT and IRS datasets. In each
iteration, a fixed number N0 of high-confidence unlabeled
points are added to the training set until convergence, yielding
improved classification accuracy and robust model generaliza-
tion (Fig. 1).

V. EXPERIMENTAL RESULTS

This experiment utilizes two numeric satellite datasets—a
SPOT and IRS images [3]—where landcover types are repre-
sented by pixel intensity values without spatial information
(Scatter plot shown in Fig.2(a) and 2(b) . Each dataset is
randomized, partitioned into two equal subsets, and one subset
forms an initial training set with 20% labeled and 80%
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Input Labeled points: L = [(xi, yi)] , i = 1, 2, . . . , l and
un-labeled points: U = [(xi)] , i = l + 1, . . . , n.
classifier SVM and FCM.
Output Final SVM classifier with updated labeled set W .
1. Initialize the working set W = L, N = N0 and ϵ = ϵ0.
2. Train SVM with W .
3. Estimate the memebership values vi using Eqn. 2.
4. Obtain N new input examples from U with membership vi
such that

such that vi ≥ ϵ .
5. Obtain label vector of N using the trained SVM.
6. Update W by adding N examples.
7. Remove N from the unlabeled set U .
8.Repeat steps 2-7 until convergence is achieved.

Fig. 1. Cluster based support vector machine learning

unlabeled points. The proposed center-based active learning
strategy is applied to this data, and the newly curated training
set is used for classification, with random and border-based
selection methods also employed for comparative analysis of
unlabeled data incorporation. The three-dimensional SPOT
dataset [3] contains 932 samples in green, red, and NIR
bands across seven complex, overlapping classes: Turbid Water
(TW), Pond Water (PW), Concrete, Vegetation, Habitation,
Baren Land (BL), and Roads/Bridges (B/R). The IRS dataset
[3] comprises 198 samples with four spectral bands (green,
red, NIR, and infrared) partitioned into six classes: PW, TW1,
TW2, Vegetation, BL, Habitation, and Concrete.

A. Input parameters

The parameters (C, γ) were estimated using a grid search.
For instance, the optimal values found for one classifier
were (C, γ) = (14.2, 3.0)as this pair yielded the smallest
generalization error. The parameter ϵ was set to 0.5. Following
common practice in the literature [4], [12], the value of the
value of m is 2.

B. Evaluation Criterion

The algorithms are compared using four metrics-the Kappa
index introduced by Cohen is available in [13], is a widely
adopted measure of classification accuracy in many areas. It
is computed from a confusion matrix (or contingency table),
where each Cij stands for the no. of instances from actual
class i that were assigned to class j. The diagonal elements
indicates correctly classified value. Other matrices Jm, XB
and I are explained in section II.

TABLE I
CONFUSION MATRIX FOR SPOT DATA USING CBSVM (CENTER BASED)

Actual
1 2 3 4 5 6 7

1 60 0 0 0 0 0 0
2 0 70 0 0 3 0 6
3 0 5 76 0 0 0 7

Predicted 4 0 0 0 116 8 2 0
5 0 2 0 6 30 0 0
6 0 13 0 0 0 38 0
7 0 13 6 0 0 0 5

TABLE II
CONFUSION MATRIX FOR NUMERIC IRS USING CBSVM (CENTER BASED)

Actual
1 2 3 4 5 6

1 8 0 0 0 0 0
2 0 23 4 0 0 0

Predicted 3 0 0 31 1 1 0
4 0 0 0 9 0 0
5 0 0 0 4 10 0
6 0 0 0 0 1 7

TABLE III
MEAN KAPPA AND CORRECT(%) FOR TWO DATASETS

Dataset Classifier Kappa index %correct
SPOT CBSVN 0.8150 84.77

CSVM 0.7786 81.62
IRS CBSVM 0.8569 88.89

CSVM 0.8102 84.79

C. Comparative Results

A quantitative assessment of the two classifiers is presented
in Table III, which reports the overall accuracy and Kappa
index. The results demonstrate that the CBSVM classifier
achieves a higher Kappa value and overall accuracy than the
CSVM classifier on both datasets.

Furthermore, the confusion matrices generated by CBSVM,
detailed in Tables I and II, exhibit superior classification
performance compared to those of CSVM. This qualitative
improvement is corroborated by quantitative cluster validity
indices, reported in Table IV. For instance, on the SPOT
dataset, CBSVM produces an I value of 168.22, outperform-
ing the value of 158.46 produced by CSVM. The superiority of
the CBSVM method is consistently reflected across the other
performance metrics as well

D. Effect of cluster based Support Vector Learning

Figures 3(a) and 3(b) depict the accuracy (test) vs the num-
ber of training examples for three selection strategies: center-
based, random, and border-based. The results demonstrate
that center-based selection consistently yields the highest test
accuracy across both datasets.In each iteration, up to N = 10
and N = 5 samples were selected for the SPOT and IRS
datasets, respectively. A significant improvement in accuracy
is observed with center-based selection as the training sample
numbers increases, showing that points near cluster centers are
more informative than those selected by the other methods.
The proposed scheme effectively identifies these informative
points within the first few iterations. However, accuracy de-
clines with further iterations, likely due to the accumulation
of mislabeled samples. This observation suggests that optimal
performance is achieved with a limited number of iterations.
Consequently, our experiments with CBSVM were conducted
using 7 to 8 iterations.

VI. IMAGE MAPPING

The image data employed here is SPOT and IRS images [3],
[12]. The SPOT contains three spectral bands whereas IRS has
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Fig. 2. Scatter plot of (a) SPOT and (b) IRS

(a) (b)

Fig. 3. Plot of test accuracy vs number of training data using three selection techniques (a) numeric SPOT data with L = 100 and N = 10 and (b) numeric
IRS data with L = 20 and N = 5

TABLE IV
VALIDITY MEASURES FOR TWO DATASETS

dataset Classifier Jm XB I
SPOT CBSVM 8.2232E+3 0.6917 168.22

CSVM 8.4198E+3 0.7933 158.46
IRS CBSVM 3.7001E+3 0.4300 208.26

CSVM 3.8352E+3 0.4942 179.88

four bands. Each image has 262144 unclassified pixels in both
the datasets.

In this one, the problem is to label the image with various
landcover units, with the assistance of the given features
(spectral bands). SPOT and IRS have been taken as the starting
training set. Also, a random selection of image database has
been done to get a set of unlabeled points which include four
times as many points as the train set. Its training sets are
then updated through a series of training with the proposed
technique. Image datasets will be assigned a value of N .

Tables V and VI in the SPOT and IRS image respectively
tabulate the achievements of two methods in terms of three
indices. Classified images will also be verifiable on the effi-
ciency of the learners.

A. SPOT image

Fig. 4(a) shows the green band in grayscale. Classification
results for this image, which contains seven land cover classes
[3] are presented in Fig. 4(b) for CBSVM and Figure 4(c) for
CSVM. An analysis of the CBSVM result in Fig. 4(b) reveals
several key features: The Hooghly river is correctly classified
as TW. Two distinct water bodies south of the river—the Kid-
derpore Dockyard (right) and Lake Garden Reach (left)—are
accurately identified as a mix of PW and TW. In contrast,
the CSVM result (Fig. 4(c)) misclassifies these entirely as
PW.The Talis Nala, a thin channel extending from the river,
is correctly classified as PW.The Race Course, visible as a
triangular patch, is more vividly delineated by CBSVM than
by CSVM.The Beleghata Canal, extending from the top-right
corner, is correctly identified as PW.Urban areas in the top-
right and central sections are well-captured. Rabindra Setu
bridge, which crosses the river Hooghly, is captured as a
mixture of Concrete and B/R.The remaining areas in the
CSVM result (Figure 4(c)) are broadly comparable to the
CBSVM classification but lack the same level of detail and
accuracy in the specific regions noted above.Table V presents
the index values for SPOT classified by the evaluating tech-
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(a)

(b) (c)

Fig. 4. (a) SPOT image and classified image using (b) CBSVM and (c) CSVM

niques. The results demonstrate that CBSVM technique yields
superior classification quality. This superiority is contingent on
obtaining a correct model during incremental learning. The
improvement is due to the additional semi-labeled examples
incorporated by CBSVM contain the informational content
necessary to enhance classification accuracy.

TABLE V
RESULTS FOR THE KOLKATA SPOT DATA

Classifier Jm XB I
CBSVM 1.9603E+6 0.2281 40.21
CSVM 1.9561E+6 0.2367 37.46

B. IRS image

Figure 5(a) displays the Mumbai IRS image in grayscale for
the infrared band (Band 4). The corresponding classification
results obtained using the CBSVM and CSVM shown in
in Fig 5(b) and 5(c), respectively.Based on available ground
truth, the image features six primary land cover classes: turbid
water (subdivided into TW1 and TW2), concrete, habitation,
vegetation, and barren land.An analysis of the CBSVM result
in Fig. 5(b) shows that the the city is bounded by the Arabian
Sea on three sides.. The classifier successfully distinguishes
two distinct spectral properties of the seawater, categorizing
it as TW1 and TW2, which aligns with the variations visible

TABLE VI
RESULTS FOR THE MUMBAI IRS DATA

Classifier Jm XB I
CBSVM 2.0970E+6 0.1941 97.49
CSVM 2.0985E+6 0.2170 87.34

in the original image (Figure 5(a)).Several islands, including
Elephanta Islands, are visible in the bottom-right portion of
image and are largely classified. The dockyard, located on the
southeastern coast and characterized by a distinctive three-
fingered structure, is also accurately identified. As expected,
BL within the islands are correctly classified. The heavily
industrialized and urbanized mainland is predominantly iden-
tified as mixture of habitation and concrete.Fig. 5(c) presents
the classification result from the CSVM method. While the
CSVM classifier also distinguishes two spectral regions in the
Arabian Sea, the result is less precise than the segmentation
achieved by CBSVM in Figure 5(b). The classification of other
land cover types is broadly consistent with the results shown
previously. Table VI presents the Jm, XB and I index values
for the image of IRS using two algorithms. The results clearly
demonstrate the superior performance CBSVM method over
traditional CSVM.
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(a)

(b) (c)

Fig. 5. (a) IRS image and classified image using (b) CBSVM and (c) CSVM

VII. CONCLUSION

This article presents a semi-supervised pixel classification
method for remote sensing imagery, which integrates fuzzy
clustering to enhance SVM classifier. The objective is to itera-
tively construct an accurate model by selectively incorporating
the most informative points from the unlabeled data. The pro-
posed algorithm, CBSVM, begins with a small initial training
set and incrementally expands it with high-value samples. The
strength of CBSVM lies in this targeted, incremental growth of
the labeled dataset. Experimental outcomes on both numerical
benchmarks and real datasets indicates that this technique
achieves superiority over CSVM approach. Consequently, this
method is a promising candidate for deployment in other
domains where labeled data is scarce or costly to obtain.
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