Ig*-CLOSED SETS IN FUZZY IDEAL TOPOLOGICAL SPACES

Anita Singh Banafar and Anil Kumar
Department of Applied Mathematics
Jabalpur Engineering College Jabalpur (M. P.) – 482011- INDIA
Department of Mathematics
School of Physical Sciences
Strex University Gurugram Harayana – India

Abstract:

In this paper we introduce the notion of Ig*-closed sets, Ig*-open sets in fuzzy ideal topological space and studied some of its basic properties and characterizations. It shows this class lies between fuzzy closed sets and fuzzy g-closed sets.

Keywords and Phrases: Ig*-closed sets, Ig*-open.

1. Introduction

After the introduction of fuzzy sets by Zadeh [18] in 1965 and fuzzy topology by Chang [2] in 1968, several researches were conducted on the generalization of the notions of fuzzy sets and fuzzy topology. The hybridization of fuzzy topology and fuzzy ideal theory was initiated by Mahmoud [6] and Sarkar [12] independently in 1997. They [6, 12] introduced the concept of fuzzy ideal topological spaces as an extension of fuzzy topological spaces and ideal topological spaces.

A nonempty collection of fuzzy sets I of a set X satisfying the conditions:

- (i) if $A \in I$ and $B \le A$, then $B \in I$ (heredity),
- (ii) if $A \in I$ and $B \in I$ then $A \cup B \in I$ (finite additivity) is called a fuzzy ideal on X. The triplex (X, τ, I) denotes a fuzzy ideal topological space with a fuzzy ideal I and fuzzy topology τ [12].

The local function for a fuzzy set A of X with respect to τ and I denoted by A^* (τ , I) (briefly A^*) in a fuzzy ideal topological space (X,τ,I) is the union of all fuzzy points x_β such that if U is a Q-neighbourhood of x_β and $E \in I$ then for at least one point $y \in X$ for which U(y) + A(y) - 1 > E(y) [12]. The *-closure operator of a fuzzy set A denoted by $CI^*(A)$ in (X,τ,I) defined as $CI^*(A) = A \cup A^*$. In (X,τ,I) the collection τ^* (I) is an extension of fuzzy topological space than τ via fuzzy ideal which is constructed by considering the class $\beta = \{U-E: U \in \tau, E \in I\}$ as a base [6,12].

Recently the concepts of fuzzy semi-I-open sets [4], fuzzy α -I-open sets [16], fuzzy γ -I-open sets [3], fuzzy pre-I-open sets [8] and fuzzy δ -I-open sets [17] have been introduced and studied in fuzzy ideal topological spaces. In the present paper we introduce and study the concept of fuzzy I_{g^*} -closed sets in fuzzy ideal topological spaces which simultaneously generalizes the concept of I_{g^*} -closed sets [11].

2. Preliminaries

Let X be a nonempty set. A family τ of fuzzy sets of X is called a fuzzy topology [2] on X if the null fuzzy set 0 and the whole fuzzy set 1 belongs to τ and τ is closed with respect to any union and finite intersection. If τ is a fuzzy topology on X, then the pair (X,τ) is called a fuzzy topological space. The members of τ are called fuzzy open sets of X and their complements are called fuzzy closed sets. The closure of a fuzzy set A of X denoted by Cl(A), is the intersection of all fuzzy closed sets which contains A. The interior [2] of a fuzzy set A of X denoted by Int(A) is the union of all fuzzy subsets contained in A. A fuzzy set A of a fuzzy topological space (X,τ) is called fuzzy semi-open if there exists a fuzzy open set U in X such that $U \le A \le Cl(U)$ [1]. A fuzzy set A in (X,τ) is said to be quasi-coincident with a fuzzy set B, denoted by AqB, if there exists a point $x \in X$ such that A(x) + B(x) > 1 [4]. A fuzzy set V in (X,τ) is called a Q-neighbourhood of a fuzzy point x_β if there exists a fuzzy open set U of X such that $x_\beta qU \le V$ [4].

Definition 2.1: A fuzzy set A of a fuzzy topological space (X, τ) is called fuzzy generalized closed written as fuzzy g-closed if $Cl(A) \le O$ whenever $A \le O$ and O is fuzzy open [14].

Definition 2.2: A fuzzy set A of fuzzy ideal topological space (X, τ, I) is said to be fuzzy *-closed (resp. fuzzy *-dense in itself) if $A^* \le A$ (resp. $A \le A^*$) [12].

Definition 2.3: A fuzzy set A of a fuzzy ideal topological space (X, τ, I) is called fuzzy I_g -closed if $A^* \leq U$, whenever $A \leq U$ and U is fuzzy open in X [13].

Lemma 2.1: $A \le B \Leftrightarrow \neg (Aq(1-B))$, for every pair of fuzzy sets A and B of X [9].

3. Fuzzy Ig*-closed sets

Definition 3.1: A fuzzy set A of a fuzzy ideal topological space (X, τ, I) is called fuzzy Ig^* -closed if $A^* \le U$, whenever $A \le U$ and U is fuzzy g-open in X.

Remark 3.1: Every fuzzy *-closed set of a fuzzy ideal topological space (X, τ, I) is fuzzy Ig^* -closed and every fuzzy Ig^* -closed is fuzzy I_g -closed set but the converse may not be true.

Remark 3.2: In a fuzzy ideal topological space (X, τ, I) , I is fuzzy Ig^* -closed for every $A \in I$.

Theorem 3.1: Let (X, τ, I) be a fuzzy ideal topological space. Then A^* is fuzzy Ig^* -closed for every fuzzy set A of X.

Proof: Let A be a fuzzy set of X and U be any fuzzy g-open set of X such that $A^* \le U$. Since $(A^*)^* \le A^*$ it follows that $(A^*)^* \le U$. Hence A^* is fuzzy Ig^* -closed.

Theorem 3.2: Let (X, τ, I) be a fuzzy ideal topological space and A be a fuzzy Ig^* -closed and fuzzy g-open set in X. Then A is fuzzy *-closed.

Proof: Since A is fuzzy g-open and fuzzy Ig^* -closed and $A \le A$. It follows that $A^* \le A$ because A is fuzzy Ig^* -closed. Hence $Cl^*(A) = AUA^* \le A$ and A is fuzzy *-closed.

Theorem 3.3: Let (X, τ, I) be a fuzzy ideal topological space and A be a fuzzy set of X. Then the following are equivalent:

- (i) A is fuzzy Ig*-closed.
- (ii) $Cl^*(A) \le U$ whenever $A^* \le U$ and U is fuzzy g-open in X.
- (iii) $\rceil (AqF) \Rightarrow \rceil (Cl^*(A)qF)$ for every fuzzy closed set F of X.
- (iv) $\rceil (AqF) \Longrightarrow \rceil (A^*qF)$ for every fuzzy closed set F of X.

Proof: (i) \Longrightarrow (ii). Let A be a fuzzy Ig*-closed set in X. Let $A^* \le U$ where U is fuzzy g-open set in X. Then $A^* \le U$. Hence $CI^*(A) = AUA^* \le U$. Which implies that $CI^*(A) \le U$.

(ii) \Longrightarrow (i). Let A be a fuzzy set of X. By hypothesis $Cl^*(A) \le U$. Which implies that $A^* \le U$. Hence A is fuzzy Ig^* -closed.

- (ii) \Rightarrow (iii). Let F be a fuzzy closed set of X and \rceil (AqF). Then 1-F is fuzzy open in X and by Lemma 2.1, A \leq 1-F. Therefore, Cl*(A) \leq 1-F, because A is fuzzy Ig*-closed. Hence by Lemma 2.1, \rceil (Cl*(A)qF).
- (iii) \Rightarrow (ii). Let U be a fuzzy Ig*-open set of X such that $A^* \leq U$. Then by Lemma 2.1, $\[(Aq(1-U)) \]$ and 1-U is fuzzy closed in X. Therefore by hypothesis $\[(Cl^*(A)q(1-U)) \]$. Hence, $Cl^*(A) \leq U$.
- (i) \Longrightarrow (iv). Let F be a fuzzy g-closed set in X such that \neg (AqF). Then A \leq 1-F where 1-F is fuzzy g-open. Therefore by (i) $A^* \leq 1$ -F. Hence \neg (A^* qF).
- (iv) \Longrightarrow (i). Let U be a fuzzy closed set in X such that $A \le U$. Then by Lemma 2.1, $\bigcap (Aq(1-U))$ and 1-U is fuzzy closed in X. Therefore by hypothesis $\bigcap (A^*q(1-U))$. Hence $A^* \le U$ and A is fuzzy Ig^* -closed set in X.
- **Theorem 3.4:** Let (X, τ, I) be a fuzzy ideal topological space and A be a fuzzy Ig^* -closed set. Then $x qCI^*(A) \Rightarrow CI(x)qA$ for any fuzzy point x of X.

Proof: Let $x \neq Cl^*(A)$. If $\exists (Cl(x) \neq A)$. Then by Lemma 2.1, $A \leq (1-Cl(x))$. And so by Theorem 3.3(ii), $Cl^*(A) \leq (1-Cl(x))$ because (1-Cl(x)) is fuzzy g-open set in X. Which implies that $Cl^*(A) \leq (1-x)$. Hence by Theorem 3.3(ii), $\exists (x \neq Cl^*(A))$, which is a contradiction.

Theorem 3.5: Let (X, τ, I) be a fuzzy ideal topological space and A be fuzzy *-dense in itself fuzzy Ig^* -closed set of X. Then A is fuzzy g-closed.

Proof: Let U be a fuzzy open set of X such that $A \le U$. Since A is fuzzy Ig^* -closed, by Theorem 3.3 (ii), $Cl^*(A) \le U$. Therefore, $Cl(A) \le U$, because A is fuzzy *-dense in itself. Hence A is fuzzy g-closed.

Theorem 3.6: Let (X, τ, I) be a fuzzy ideal topological space where $I = \{0\}$ and A be a fuzzy set of X. Then A is fuzzy Ig^* -closed if and only if A is fuzzy g-closed.

Proof: Since $I = \{0\}$, $A^* = Cl(A)$ for each subset A of X. Now the result can be easily proved.

Theorem 3.7: Let (X, τ, I) be a fuzzy ideal topological space and A, B are fuzzy Ig^* -closed sets of X. Then AUB is fuzzy Ig^* -closed.

Proof: Let U be a fuzzy g-open set of X such that AUB \leq U. Then A \leq U and B \leq U. Therefore A* \leq U and B* \leq U because A and B are fuzzy Ig*-closed sets of X. Hence $(AUB)^* \leq U$ and AUB is fuzzy Ig*-closed.

Remark 3.3: The intersection of two fuzzy Ig^* -closed sets in a fuzzy ideal topological space (X, τ, I) may not be fuzzy Ig^* -closed.

Example 3.1: Let $X = \{a, b\}$ and A, B be two fuzzy sets defined as follows:

$$A (a) = 0.9$$
 , $A (b) = 0.7$
 $B (a) = 0.8$, $B (b) = 0.7$
 $U (a) = 0.3$, $U (b) = 0.4$

Let $\tau = \{0, U, 1\}$ and $I = \{0\}$. Then A and B are fuzzy Ig^* -closed sets in (X, τ, I) but $A \cap B$ is not fuzzy Ig^* -closed.

Theorem 3.8: Let (X, τ, I) be a fuzzy ideal topological space and A, B are fuzzy sets of X such that $A \le B \le Cl^*(A)$. If A is fuzzy Ig^* -closed set in X, then B is fuzzy Ig^* -closed.

Proof: Let U be a fuzzy g-open set such that $B \le U$. Since $A \le B$ we have $A \le U$. Hence, $Cl^*(A) \le U$ because A is fuzzy Ig^* -closed. Now $B \le Cl^*(A)$ implies that $Cl^*(B) \le Cl^*(A) \le U$. Consequently B is fuzzy Ig^* -closed.

Theorem 3.9: Let (X, τ, I) be a fuzzy ideal topological space and A, B are fuzzy sets of X such that $A \le B \le A^*$. Then A and B are fuzzy g-closed.

Proof: Obvious.

Theorem 3.10: Let (X, τ, I) be a fuzzy ideal topological space. If A and B are fuzzy subsets of X such that $A \le B \le A^*$ and A is fuzzy Ig*-closed. Then $A^* = B^*$ and B is fuzzy *-open in itself.

Proof: Obvious.

Theorem 3.11: Let (X, τ, I) be a fuzzy ideal topological space and \mathcal{F} be the family of all fuzzy *- closed sets of X. Then $\tau \subset \mathcal{F}$ if and only if every fuzzy set of X is fuzzy Ig*-closed.

Proof: Necessity. Let $\tau \subset \mathcal{F}$ and U be a fuzzy g-open set in X such that $A^* \leq U$. Now $U \in \tau \Longrightarrow U \in \mathcal{F}$. And so $Cl^*(A) \leq Cl^*(U) = U$ and A is fuzzy Ig^* -closed set in X.

Sufficiency. Suppose that every fuzzy set of X is fuzzy Ig*-closed. Let $U \in \tau$. Since U is fuzzy Ig*-closed and $U \le U$, $Cl^*(U) \le U$. Hence $Cl^*(U) = U$ and $U \in \mathcal{F}$. Therefore $\tau \subset \mathcal{F}$.

Definition 3.2: A fuzzy set A of a fuzzy ideal topological space (X, τ, I) is called fuzzy Ig^* -open if its complement 1-A is fuzzy Ig^* -closed.

Remark 3.4: Every fuzzy *-open set in a fuzzy ideal topological space (X, τ, I) is fuzzy Ig^* -open and every fuzzy Ig^* -open is fuzzy I_g -open. But the converse may not be true.

Theorem 3.12: Let (X, τ, I) be a fuzzy ideal topological space and A is fuzzy set of X. Then A is fuzzy Ig^* -open if and only if $F \le Int^*(A)$ whenever F is fuzzy g-closed and $F \le A$.

Proof: Necessity. Let A be fuzzy Ig^* -open and F is fuzzy g-closed set such that $F \le A$. Then 1-A is fuzzy Ig^* -closed, $1-A \le 1-F$ and 1-F is fuzzy g-open in X. Hence $CI^*(1-A) \le (1-F)$. Which implies that $F \le Int^*(A)$.

Sufficiency. Let U be a fuzzy g-open set such that $1-A \le U$. Then 1-U is fuzzy g-closed set of X such that $1-U \le A$. And so by hypothesis, $1-U \le Int^*(A)$. Which implies that $Cl^*(1-A) \le U$ and 1-A is fuzzy Ig^* -closed. Hence A is fuzzy Ig^* -open.

Corollary 3.1: Let (X, τ, I) be a fuzzy ideal topological space and A is fuzzy set of X. Then A is fuzzy Ig^* -open if and only if $F \leq Int^*(A)$ whenever F is fuzzy closed and $F \leq A$.

Theorem 3.13: Let (X, τ, I) be a fuzzy ideal topological space and A be a fuzzy set of X. If A is fuzzy Ig^* -open and $Int^*(A) \le B \le A$, then B is fuzzy Ig^* -open. **Proof:** Let A be fuzzy Ig^* -open in X then 1-A is fuzzy Ig^* -closed. Hence $Cl^*(1-A) \le (1-A)$ is fuzzy g-open set. Also $Int^*(A) \le Int^*(B) \Rightarrow Cl^*(1-B) \le Cl^*(1-A)$. Hence, B is fuzzy Ig^* -open.

References

- **1. Azad K. K.**, On fuzzy semi continuity, fuzzy almost continuity and weakly continuity, J. Math. Anal. Appl. 82(1981), 14-32.
- **2. Chang C.L.**, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-189.
- 3. Gupta M.K. and Rajneesh, Fuzzy γ -I-open sets and a new decomposition of fuzzy semi-I-continuity via fuzzy ideals, Int. J. Math. Anal. 3(28) (2009), 1349-1357.

- **4. Hatir E.**and **Jafari S.**, Fuzzy semi-I-open sets and fuzzy semi-I-continuity via fuzzy idealization, Chaos Solitons and Fractals 34(2007), 1220-1224.
- **5. Hayashi E.**, Topologies defined by local properties, Math. Ann. 156 (1964), 205-215.
- **6. Mahmoud R. A.**, Fuzzy ideal, fuzzy local functions and fuzzy topology, J. fuzzy Math. 5(1) (1997), 165-172.
- **7.** Naseef A. A. and Mahmoud R. A., Some topological applications via fuzzy ideals, Chaos Solitons and Fractals 13 (2002), 825-831.
- **8.** Naseef A.A. and Hatir E., On fuzzy pre-I-open sets and a decomposition of fuzzy I-continuity, Chaos Solitons and Fractals 40(3) (2007), 1185-1189.
- **9. Pu. P. M.** and **Liu Y. M.**, Fuzzy topology I Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76(1980), 571-599.
- **10. Pu. P. M.** and **Liu Y. M.**, Fuzzy topology II, product and quotient spaces, J. Math. Anal. Appl. 77 (1980), 20-37.
- **11. Ravi O., Paranjothi M., Murugesan S. and Meharin M.**, g*-closed sets in ideal topological spaces, South Asian Journal of Mathematics 4(6) (2014), 252-264.
- **12. Sarkar D.**, Fuzzy ideal theory, fuzzy local function and generated fuzzy topology, Fuzzy sets and systems, 87(1997), 117-123.
- **13. Thakur S. S. and Banafar A. S.**, Generalized closed sets in fuzzy ideal topological spaces, J. Fuzzy Math. 21(4) (2013), 803-808.
- **14. Thakur S. S.** and **Malviya R.**, Generalized closed sets in fuzzy topology, Math. Note 38(1995), 137-140.
- **15. Vaidyanathaswamy R.**, The localization theory in set topology. Proc. Indian Acad. Sci., (20) (1945), 51-61.
- **16. Yuksel S., G.Caylak E.** And **Acikgoz A.**, On fuzzy α -I-open continuous and fuzzy α -I-open functions, Chaos Solitons and Fractals 41(4) (2009), 1691-1696.
- 17. Yuksel S., G.Caylak E. And Acikgoz A., On fuzzy \eth -I-open sets and decomposition of fuzzy α -I-continuity, SDU journal of Science (E-Journal) 5(1) (2010), 147-153.

18. Zadeh L. A., Fuzzy sets, Information Control (8) (1965), 338-353.