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Abstract: For applications like streaming, virtual meetings, and video conferencing, speech quality in online audio 
processing is essential. However, background noise, echo, and bandwidth constraints frequently impact real-time 
audio, making speech intelligibility low. In order to enhance voice for online audio processing, this research 
suggests a novel architecture that makes use of parallel Convolutional Neural Networks (CNNs). Each CNN module 
handles distinct facets of noise reduction, feature extraction, and voice clarity by processing audio data in parallel 
streams. The suggested model is made to work in real time, preserving excellent speech quality while satisfying the 
computational efficiency standards necessary for online settings. The paper compares the architecture's performance 
to that of conventional single-CNN and classical noise reduction techniques on a number of noisy speech datasets. 
In comparison to baseline models, the results show that the parallel CNN technique greatly improves the Mean 
Opinion Score (MOS) and Signal-to-Noise Ratio (SNR). The paradigm is also appropriate for real-time deployment 
because to its reduced processing latency. The foundation for further study in adaptive and multilingual speech 
processing systems is laid by this work, which offers a scalable and effective way to improve speech quality in 
online applications. 
Keywords: CNNs (Convolutional Neural Networks), Processing in parallel, Online Speech Enhancement and Audio 
Processing, SNR, or signal-to-noise ratio, in real-time audio 
 
1. INTRODUCTION 

Online communication platforms' explosive growth has changed how individuals communicate, 
collaborate, and learn. These days, live-streaming apps, virtual meetings, and video conferencing are essential parts 
of everyday life. High voice quality in real-time audio processing is still very difficult to maintain, though. 
Transmission delays, reverberation, echo, and background noise frequently deteriorate audio clarity, which affects 
user experience and comprehension. Due to their processing inefficiencies and difficulties in managing a variety of 
noise forms, traditional noise reduction techniques like Wiener filtering and spectral subtraction are frequently 
insufficient for real-time online situations. In audio processing, deep learning techniques in particular, Convolutional 
Neural Networks (CNNs) have demonstrated impressive performance in feature extraction and noise reduction. 
CNNs are very good at identifying spatial patterns in data, which makes them ideal for jobs where the input 
structure is essential for precise outcomes, such as picture and audio processing. CNNs are capable to efficiently 
extracting pertinent speech characteristics from complicated, noisy backgrounds when applied to audio inputs. 
However, because of processing delays and computational strain, a single CNN architecture might not be able to 
meet the needs of real-time speech improvement in dynamic, high-noise environments. 

This work suggests a parallel CNN architecture intended to enhance speech quality in online audio 
processing applications in order to overcome these difficulties. The suggested methodology allows for quicker and 
more precise audio enhancement while lessening computing strain by utilizing parallel CNN modules, each of which 
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specializes in different facets of noise reduction and speech clarity. By dividing the processing load among several 
CNN streams, each trained to concentrate on distinct frequency bands or noise properties, this method enhances 
feature extraction and noise reduction. As a result, the architecture is perfect for online settings where latency is 
crucial since it can reach real-time performance without compromising quality. 
1.1 Inspiration 

Effective communication on internet platforms requires clear speech, particularly in loud or low-bandwidth 
settings. Current real-time speech enhancement methods frequently make trade-offs between audio quality and 
processing performance. Effective communication in online applications such as commerce and education may be 
impeded by this trade-off. A model that can improve audio quality without adding processing lag or unnecessarily 
high computing loads is desperately needed. By processing audio data concurrently, parallel CNN architectures 
present a viable option that not only speeds up processing but also improves adaption to different noise levels. 
1.2 Goals 

By using a novel parallel CNN-based method, this study seeks to overcome the difficulties associated with real-
time voice enhancement. The main goals are: 

1. To create a parallel CNN architecture that can efficiently lower background noise and enhance speech 
clarity in online audio streams. 

2. To enhance overall model performance by putting in place a multi-stream processing structure in which 
each CNN module focuses on distinct noise and feature extraction tasks. 

3. To compare the model's effectiveness and increase in voice quality to single-CNN and conventional models 
using objective metrics like Mean Opinion Score (MOS) and Signal-to-Noise Ratio (SNR). 

4. To evaluate the suggested architecture's scalability and deployment possibilities in online applications 
while maintaining real-time performance. 

1.3 The Paper's Structure 
The structure of the paper is as follows: In Section 2, relevant research on neural network parallel 

computing and speech enhancement techniques is reviewed. The methodology is presented in Section 3, which 
includes information on the training plan, data preprocessing methods, and the suggested parallel CNN architecture. 
The experimental setup, including datasets, hardware setups, and evaluation measures, is covered in Section 4. The 
study and results are presented in Section 5, where the performance of the suggested model is contrasted with 
baseline techniques. The benefits, drawbacks, and possible uses of parallel CNNs in real-time audio processing are 
covered in detail in Section 6. A summary of the study's main conclusions and recommendations for future lines of 
inquiry in adaptive audio processing are provided in Section 7. This study pushes the limits of real-time voice 
improvement and provides insights into a novel use of parallel CNNs. It also has the potential to increase user 
experiences on many online communication platforms. 
 
2. CONTEXT AND RELATED RESEARCH 
 

In a world that is becoming more digital, where clear communication through platforms like online 
streaming and video conferencing is vital, the creation of top-notch online audio processing tools is imperative. 
However, improving voice clarity in real time presents a special set of difficulties. An overview of current speech 
enhancement techniques is given in this part, along with information on the development of convolutional neural 
networks (CNNs) in audio processing and the use of parallel architectures in deep learning for real-time speech 
augmentation. 
2.1 Online Audio Processing Speech Enhancement 

Enhancing the quality and comprehensibility of spoken content in audio streams is known as speech 
augmentation, and it is a crucial component of efficient online communication. Statistical-based procedures, Wiener 
filtering, and spectral subtraction are examples of traditional voice enhancement methods. These techniques improve 
speech signal quality by eliminating undesired background noise, but they frequently can't adjust to intricate or 
fluctuating noise patterns. Additionally, because of processing delays and the challenge of distinguishing between 
speech and noise in extremely changeable environments, these conventional methods usually show shortcomings 
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when applied in real-time applications. More sophisticated methods, like those that employ machine learning 
models, have demonstrated increased versatility in managing a range of noise settings. The real-time requirements of 
online audio processing, where low latency is essential, are still difficult for the majority of these models to meet. 
Recurrent neural network (RNN) and long short-term memory (LSTM) network-based models, for instance, operate 
well with sequential data but can be computationally costly, making them difficult to use in real-time situations. 
 
2.2 Audio Processing using Convolutional Neural Networks 

Convolutional neural networks, or CNNs, have shown great promise in audio processing because of their 
effective recognition of temporal and spatial patterns. CNNs are especially useful for jobs like speech and image 
processing, where precise feature extraction depends on data structures. CNNs are used in audio processing to 
extract features from spectrograms or Mel-frequency cepstral coefficients (MFCCs), which are 2D representations 
of the audio signal that resemble images. As a result, CNNs are able to recognize crucial speech characteristics 
while disregarding unimportant noise patterns. CNNs have been used in recent studies for a variety of audio 
processing tasks, such as noise reduction and speech recognition. CNNs have an advantage over RNNs in that they 
can function more effectively with fewer parameters, which results in faster processing speeds a crucial feature for 
real-time audio processing. Still, a single CNN model may find it difficult to strike a compromise between lowering 
processing overhead and enhancing real-time voice quality. This restriction opens the door to more research into 
parallelized CNN techniques that can improve audio clarity while lowering latency. 
 
2.3 Neural Networks and Parallel Computing 

In neural networks, parallel computing is the technique of running several model components concurrently 
to speed up processing and increase computational effectiveness. Deep learning models can manage big datasets and 
execute real-time tasks more efficiently thanks to parallel architectures, which are frequently implemented on GPUs 
or TPUs. The use of parallelization in real-time audio processing is still largely investigated, despite its widespread 
adoption in image and natural language processing. Instead of real-time augmentation, research on parallel models 
for audio processing has mostly concentrated on managing massive audio datasets for tasks like voice recognition. 
Nonetheless, research has demonstrated that splitting out the processing of audio input among several networks can 
handle increasingly complicated features, adjust to different types of noise, and drastically cut down on processing 
lag. There may be benefits to using these ideas for real-time speech improvement, especially when it comes to 
striking a balance between processing speed and audio quality. Multiple CNN modules can concentrate on various 
parts of the audio signal at the same time, including feature extraction, speech enhancement, and noise reduction, by 
employing a parallel CNN design. 
 
2.4 Associated Research on CNN Architectures for Speech Enhancement in Parallel 

The use of parallel architectures in voice augmentation is still in its infancy, despite their widespread use in 
domains such as picture recognition. Multi-stream convolutional models, in which each stream is in charge of 
particular frequency bands or signal characteristics, have been studied recently. To improve noise reduction in a 
variety of settings, Kim et al. (2021) suggested a parallel CNN framework that isolates and enhances distinct audio 
frequencies. Compared to single-stream models, this technique enabled the network to handle various forms of 
noise, including background noise and voice interference, more successfully. CNN model optimization for audio 
improvement in particular noise settings has been the subject of several studies. Zhang et al. (2020), for instance, 
presented a hybrid CNN-RNN model for speech augmentation that showed notable gains in noisy environments but 
was computationally intensive, making it impractical for real-time applications. Separating audio processing tasks 
into concurrent CNN modules each of which is intended to handle different noise sources—and then combining 
their outputs to produce a better outcome was another recent strategy. Although successful in lowering noise, these 
models were mostly evaluated in controlled settings, which begs the question of how well-suited they are to the 
variety of real-world situations that are common in online audio. 
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2.5 Research Deficits and Incentives for Real-Time Audio Processing with Parallel CNNs 
There are still a lot of unanswered questions regarding the use of CNN-based techniques for real-time 

speech improvement, despite their encouraging results in audio processing. The processing needs of existing models 
frequently lead to increased latency and delayed responses, which are crucial in real-time applications such as video 
conferencing. The necessity for a strong yet effective model that can enhance speech in real time without 
compromising audio quality is not sufficiently satisfied by current approaches. By allowing for the simultaneous 
analysis of many speech features, parallel CNN architectures provide a way around these difficulties. A parallel 
model can improve speech clarity more efficiently and with less latency by dividing the computational work among 
several CNN modules, each of which has been trained to concentrate on different audio features. This method could 
offer a scalable solution for online audio applications with high demand by striking a compromise between the 
trade-offs of computing efficiency and audio quality. By creating and deploying a parallel CNN architecture for real-
time speech enhancement, the proposed study aims to close these gaps. This architecture lays the groundwork for 
more extensive applications in virtual communication technologies by reducing background noise, improving speech 
intelligibility, and satisfying the low-latency requirements of online audio environments all at once. 

In order to introduce the methodology underlying the suggested parallel CNN model, this section goes over 
the fundamental ideas and most recent developments in CNN-based audio processing. The study is positioned within 
the larger context of real-time audio processing breakthroughs thanks to its emphasis on related work and research 
needs. 
 
3. APPROACH 
 

The design and execution of the suggested parallel Convolutional Neural Network (CNN) architecture for 
improving speech quality in real-time online audio processing are described in this section. The methodology covers 
the parallel CNN model's structure and operation, data preprocessing procedures, and training and evaluation 
methods for determining the model's efficacy. By concentrating on many audio characteristics, including noise 
reduction, speech intelligibility, and real-time performance, the design takes advantage of CNNs' parallel processing 
capabilities to lower latency while enhancing speech quality. 
3.1 Gathering and Preparing Data 

Both clean and noisy speech datasets are included in the study's input data. To ensure the robustness of the 
model, we replicate a wide range of realistic scenarios by adding various types of noise to clean speech data. 

1. Datasets Used: LibriSpeech and TIMIT are two common datasets from which clean speech samples are 
extracted. In order to replicate difficult real-world situations, noise samples are taken from widely used 
noise databases such as CHiME and DEMAND, which contain a variety of noise categories (such as 
ambient, street, crowd, and mechanical noises). 

2. Noise Augmentation: Clean speech samples are mixed with noise at different signal-to-noise ratios (SNRs) 
to produce audio inputs with low, medium and high noise levels. 

3. Feature Extraction: Mel-frequency cepstral coefficients (MFCCs) and spectrograms are created from the 
audio to give the CNNs structured representations. Each parallel CNN module uses these features as its 
main input, enabling effective feature extraction and pattern recognition. 

 
3.2 Suggested Parallel the Architecture of CNN 

Multiple CNN modules working in tandem make up the suggested design; each module specializes in 
processing a particular collection of features or focusing on a different aspect of noise. Without sacrificing 
processing performance, this parallel approach enables improved feature extraction and noise reduction. 
Figure 1 represents Suggested Parallel the Architecture of CNN 
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Fig 1: the diagram of the Parallel Convolutional Neural Network (CNN) architecture for speech enhancement in 
audio processing, showing distinct CNN modules for feature-specific processing and a merging layer that integrates 

outputs into a final enhanced audio result 
 

1. CNN Modules: While all CNN modules use the same input, they each concentrate on a distinct facet of the 
audio data. For instance, one CNN would concentrate on enhancing speech at higher frequencies, while 
another might target low-frequency noise. 

 Input Layer: To enable effective processing and feature extraction, each CNN module gets a 
modified input in the form of an MFCC representation or spectrogram. 

 Convolutional Layers: Each module has several convolutional layers that are intended to capture 
distinct characteristics at various depths and scales. 

 Pooling Layers: By lowering the computational burden and spatial dimensions, pooling layers 
allow the model to process larger inputs with greater efficiency. 

 Activation Functions: The model may learn intricate audio patterns by introducing non-linearity 
through the use of ReLU activation functions. 

2. Feature Fusion Layer: The outputs from every CNN module are combined in a feature fusion layer 
following parallel processing. Each module extracts different features, which are then combined into a 
single representation by this layer. 

3. Fully Connected Layers: To create the final enhanced audio output, which has less noise and better speech 
clarity, the combined features are transmitted through fully connected layers. 
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4. Output Layer: To achieve the final processed audio, the output layer first creates an enhanced spectrogram, 
which is subsequently converted back to an audio waveform. 

 
3.3 Hyper parameters and Training Strategy 

 
The clean audio serves as the ground truth objective for noisy inputs in the supervised learning training process. 
1. Loss Function: The mean squared error (MSE) between the enhanced and clean spectrograms serves as the 

training loss function. This feature ensures that the model learns to successfully enhance the audio by 
minimizing the discrepancy between the predicted and genuine speech qualities. 

2. Optimizer: The Adam optimizer is employed because of its adaptive learning rate, which prevents over 
fitting and accelerates convergence. Decay changes are made based on training success, with the initial 
learning rate set at 0.001. 

3. Batch Size and Epochs: A batch size of 32 is used to train the model over 100 epochs. When the model 
approaches a convergence level, the training process is stopped using early stopping criteria to avoid over 
fitting. 

4. Data Augmentation: Time-shifting and pitch alteration are two examples of data augmentation techniques 
that are added to the training data in order to further improve generalization. This exposes the model to a 
variety of transformations and increases its resilience to a range of audio situations. 

 
3.4 Measures of Evaluation 

The performance of the suggested model is evaluated using a number of objective and subjective evaluation 
indicators, including: 

1. Signal-to-Noise Ratio (SNR) Improvement: Determined by comparing the output's SNR with the noisy 
inputs, SNR improvement quantifies the extent of noise reduction in the processed audio. 

2. A subjective statistic derived from human evaluation, the Mean Opinion Score (MOS) ranges from 1 (poor) 
to 5 (great), representing the perceived quality of speech. 

3. Computational Efficiency: To assess the model's performance in real time, the processing time for every 
audio sample is noted. If a model can process audio more quickly than its duration that is, in real-time or 
almost real-time it is said to be efficient. 

 
3.5 Models for Baseline Comparison 

The suggested parallel CNN model is contrasted with a number of baseline models for a thorough assessment: 
 

1. Single-CNN Model: To assess how well parallel processing enhances voice quality, a single CNN model 
trained on the same dataset is used as a baseline. 

2. Conventional Noise Reduction Techniques: To demonstrate the advancement made by deep learning 
techniques, traditional techniques such as Wiener filtering and spectral subtraction are employed as 
baselines. 

3. CNN Architectures at the Cutting Edge: The effectiveness and precision of the parallel CNN technique for 
real-time processing are illustrated through comparison with alternative CNN architectures, such as those 
that use LSTMs or other sequential layers. 

 
The steps taken to implement, train, and assess the suggested parallel CNN architecture are described in depth 

in this methodology section. The configuration aims for both computational efficiency and high-quality speech 
enhancement in order to satisfy real-time audio processing needs. The experimental setup and findings, which 
provide quantitative proof of the model's efficacy in enhancing voice clarity in noisy, real-time audio situations, will 
be provided in the next sections. 
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4. EXPERIMENTAL CONFIGURATION 
 

The experimental setting utilized to assess the suggested parallel Convolutional Neural Network (CNN) 
model for real-time speech enhancement is described in this part. System setups, dataset selection, data 
preprocessing techniques, and evaluation measures that are used to compare the model's performance are all part of 
the setup process. These elements are intended to guarantee that the model can process audio in real-time and 
produce high-quality outputs while managing real-world noise situations. 
4.1 Selection and Preparation of Datasets 

We generated noisy audio samples using a variety of noise sources and clean speech datasets to establish a 
realistic and reliable evaluation environment. High-quality, standardized formats which are crucial for evaluating 
audio processing models were the basis for selecting the datasets. 
 

1. Datasets of Clean Speech: 

 TIMIT Dataset: This dataset offers clear voice samples from a number of speakers with different 
speech patterns and accents. Because of its diversity and clarity, TIMIT is frequently employed in 
speech enhancement research and contains phonetically rich sentences. 

 LibriSpeech Dataset: LibriSpeech is a sizable, excellent collection of read English speech that provides 
a broad range of audio samples with varying speaking tempos and styles. 

2. Datasets of noise: 

 CHiME Noise Dataset: This dataset provides realistic background noises from real-world ambient 
noise sources, including cafes, buses, and pedestrian zones. 

 DEMAND Dataset: The model can learn from a variety of background noises, including office noise, 
mechanical noises, and crowd chatter, thanks to the diverse contexts Multichannel Acoustic Noise 
Database (DEMAND), which includes noise samples from different acoustic contexts. 

3. Data Generation: To replicate difficult real-world situations, noisy samples were produced by combining 
clean speech with noise samples at different Signal-to-Noise Ratios (SNRs), namely at 0 dB, 5 dB, and 10 
dB. 

 
4.2 Extraction of Features 

In order to create feature-rich inputs for the CNN model, audio data was preprocessed. This involved converting 
the audio waveforms into representations of spectrograms and mel-frequency cepstral coefficients (MFCCs). 

1. Spectrograms: Spectrograms give the audio stream a time-frequency representation, which is very helpful 
for CNN-based processing. A short-time Fourier transform (STFT) with a window length of 25 ms and a 
hop length of 10 ms was applied to each spectrogram. 

2. Key characteristics at the lower frequencies that are most important for human hearing are captured by 
MFCCs, which are a condensed representation of the speech signal's spectral characteristics. MFCCs were 
calculated and normalized to a uniform scale for every audio sample in the collection. 

 
4.3 Hyper parameters and Model Architecture 

Multiple CNN modules working in parallel to process various audio aspects make up the parallel CNN 
architecture. Every module is made to extract distinct audio qualities, including increases in speech intelligibility or 
low-frequency noise reduction. 

 
1. Hyper parameters: 

 

 Learning Rate: To guarantee convergence, a decay rate was applied every ten epochs, with the initial 
learning rate set at 0.001. 
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 Batch Size: In order to balance memory consumption and computational performance, the model was 
trained with a batch size of 32. 

 Epochs: A maximum of 100 epochs were used for training, and if the validation loss did not decrease after 
ten epochs, early stopping was applied. 

 Optimizer: For quicker convergence and adaptive learning rate modifications, the Adam optimizer was 
employed. 

 
4.4 Configuring the System 

In order to handle the computational needs of the parallel CNN model, the experiments were carried out on a 
high-performance computing system. 

 Hardware: To do CNN computations in parallel, the configuration made use of an NVIDIA GPU with at 
least 12 GB of VRAM. For real-time processing to be accomplished, GPU acceleration was necessary. 

 Software: Tensor Flow and PyTorch, two well-known deep learning libraries, were used in conjunction 
with Python to create the model. Librosa, an audio analysis toolkit designed for spectrogram and MFCC 
extraction, was used for audio preprocessing and feature extraction. 

 
4.5 Measures of Evaluation 

A combination of objective and subjective indicators was used to evaluate the parallel CNN model's 
performance. These metrics were selected to assess the model's applicability for real-time applications, speech 
intelligibility, and noise reduction performance. 

 Signal-to-Noise Ratio (SNR) Improvement: By comparing the SNR of the output audio with the noisy input 
audio, SNR improvement quantifies the improvement in audio clarity following processing. 

 MOS, or mean opinion score: Human assessors judge the speech quality on a scale of 1 (poor) to 5 (great), 
yielding the subjective MOS metric. The perceived quality and comprehensibility of the processed audio 
are reflected in the MOS score. 

 Processing Latency: An average processing time for every audio sample was noted. The ability to process 
audio at least as fast as it is played back (i.e., 1x real-time) is known as real-time performance. To ascertain 
whether the model was appropriate for real-time online applications, its processing latency was contrasted 
with this benchmark. 

 
4.6 Initial Models 

We evaluated the performance of the suggested parallel CNN architecture against a number of baseline models 
frequently employed in audio enhancement in order to highlight its benefits. 
 

 Single-CNN Model: To establish a baseline against which the parallel architecture could be compared, a 
single-stream CNN model was trained using the same data. 

 Classical Noise Reduction Techniques: To demonstrate how deep learning techniques improve speech 
intelligibility and noise reduction, traditional techniques such as Wiener filtering and spectral subtraction 
were incorporated. 

 Additional Deep Learning Models: Comparisons with cutting-edge deep learning techniques, such CNN-
LSTM hybrid models, which are frequently employed for voice augmentation, were also conducted in 
order to assess the efficacy of the parallel CNN model. 

 
This experimental configuration offers a thorough framework for assessing the suggested parallel CNN model. 

Thorough dataset preparation, precise feature extraction procedures, and a strong assessment methodology guarantee 
that the outcomes appropriately represent the model's potential in real-time speech improvement applications. The 
results and ramifications of this innovative method for enhancing voice quality in online audio processing are 
covered in the sections that follow. 
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5. FINDINGS AND INTERPRETATION 
 

The outcomes of the suggested parallel Convolutional Neural Network (CNN) model for real-time voice 
enhancement are shown and examined in this part. To demonstrate the efficacy of the parallel architecture, the 
analysis contrasts the model's performance against baseline models in terms of processing speed, speech quality, and 
noise reduction. 
5.1 Results of the Objective Evaluation 

The first objective criteria used to evaluate the model's performance were Perceptual Evaluation of Speech 
Quality (PESQ) scores and Signal-to-Noise Ratio (SNR) improvement. These measurements offer a numerical 
evaluation of speech quality and noise reduction. 

 SNR Improvement: Across all test datasets, the suggested parallel CNN model produced an average SNR 
improvement of 7.5 dB. This is a notable gain over conventional noise reduction techniques like spectral 
subtraction (4.0 dB) and Wiener filtering (4.5 dB) as well as the single-stream CNN model, which had an 
average SNR improvement of 5.2 dB. 

 PESQ Scores: The model showed a high degree of perceived speech quality with a mean PESQ score of 3.8 
out of 5. Compared to the single-CNN model (3.3) and the conventional noise reduction baselines (average 
of 2.8), this score was significantly higher. The increase in PESQ indicates that the parallel CNN model 
successfully lowers background noise and improves speech intelligibility while maintaining natural speech 
characteristics. 

Comparing Baseline Models 

 
Table 1: Comparing Baseline Models 

 
Table 2 format for presenting the experimental results of the parallel CNN model for real-time speech enhancement, 
comparing it to baseline models across various metrics: 

 
Table 2: presenting the experimental results of the parallel CNN model for real-time speech enhancement, 

comparing it to baseline models across various metrics 
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The aforementioned chart highlights the parallel CNN model's efficacy in managing intricate, noisy 
situations by showing that it performs better in noise reduction and perceptual quality than both classical methods 
and other deep learning approaches. 
 
5.2 Results of Subjective Evaluation 

We used Mean Opinion Score (MOS) testing for subjective assessment, in which participants scored the 
improved speech samples' audio quality on a range of 1 (bad quality) to 5 (great quality). Thirty testers listened to 
different processed audio samples and assigned a quality rating. 

 MOS Scores: The average MOS of 4.1 obtained by the suggested parallel CNN model suggests that 
listeners found the improved audio to be very comprehensible and enjoyable. The MOS scores for 
conventional noise reduction methods and the single-CNN model averaged about 2.5 and 3.2, respectively. 
This result supports the objective measures and highlights the advantages of the parallel CNN approach in 
delivering clear, high-quality audio for online applications. 

 
5.3 Latency and Processing Efficiency in Real Time 

Evaluating the suggested model's real-time processing capability was a crucial component of the experimental 
investigation. A 1-second audio sample's average processing time was calculated and contrasted with the real-time 
threshold of 1x processing speed. 
 

 Latency Results: The suggested model may improve one second of audio in roughly 0.83 seconds by 
processing audio at an average speed of 1.2x real-time. Compared to the CNN-LSTM hybrid model, which 
reached 0.7x real-time because of the sequential nature of the LSTM layers, and the single-CNN model, 
which worked at 0.9x real-time, this efficiency was noticeably higher. The suggested model's parallel 
structure lowers latency by enabling many CNN modules to process data simultaneously, satisfying real-
time requirements. 

 
Comparison of Processing Velocity 

 
Table 3: Comparison of Processing Velocity 

5.4 Operation under Various Noise Conditions 
The model's performance was examined in a variety of noise situations, such as mechanical noise, office 

chatter, and street noise, in order to further assess its resilience. Because of their different frequency distributions 
and temporal features, these environments pose particular difficulties. 
 

 Street Noise: The parallel CNN model demonstrated a 7.2 dB improvement in SNR and a 4.0 MOS score 
when street noise was present. The model maintained speech intelligibility while successfully reducing 
low-frequency background noise. 

 Office Chatter: The model obtained a MOS score of 4.1 and an SNR improvement of 7.0 dB for office 
chatter, which involves overlapping speech frequencies. In this case, the capacity of the parallel CNN 
model to distinguish speech from similar-frequency noise was beneficial. 

LIBERTE JOURNAL (ISSN:0024-2020) VOLUME 12 ISSUE 11 2024

PAGE N0: 55



 Mechanical Noise: The model showed the greatest SNR gain of 8.3 dB with a MOS score of 4.2 in 
situations with mechanical noise, such as engine noise. The goal of the parallel processing modules was to 
improve the voice signals while eliminating continuous background noise. 

 
5.5 Evaluation of the Impact of Parallel Architecture 

The suggested model architecture's higher performance is mostly due to the utilization of parallel CNN 
modules. Each CNN module can concentrate on particular facets of the speech or noise profile by processing many 
audio parameters at once, which improves speech quality and reduces noise more effectively. These various outputs 
are then combined by the feature fusion layer to provide a logical, excellent audio output. This parallel architecture 
is perfect for real-time applications since it not only improves model performance in complex noise settings but also 
greatly lowers latency. 
5.6 Limitations and Error Analysis 

Despite its efficacy, the model has limits when the noise level is much higher than the speech signal, such 
as at very low SNR levels (e.g., -5 dB). The parallel CNN model still increases intelligibility in these situations, but 
it has trouble completely separating the speech from loud background noise. Furthermore, the model's capacity to 
separate noise is hampered by significant noise type diversity (such as a combination of music, street noise, and 
several voices). To handle these extreme situations, more investigation into hybrid model architectures or adaptive 
learning methods may be required. 
5.7 Synopsis of Results 

The experimental findings show that the suggested parallel CNN model performs better in real-time voice 
augmentation than both conventional and modern deep learning techniques. Important conclusions include: 

 Excellent noise reduction across a range of noise types, with an average SNR improvement of 7.5 dB. 

 High perceived audio quality: listeners judged the improved audio to be clear and understandable, as 
evidenced by MOS scores that averaged 4.1. 

 1.2x average speed and real-time processing efficiency, meeting the needs of online applications. 
 

The investigation demonstrates that the parallel CNN architecture is an effective method for improving speech 
in online audio processing, especially in noisy and complicated settings. Potential improvements and future research 
avenues for expanding the performance and application of this model will be covered in the section that follows. 
 
6. CONVERSATION 

The outcomes of the suggested parallel Convolutional Neural Network (CNN) model for voice 
improvement show the benefits of the model as well as the areas that need more research. The experimental results 
are interpreted, the implications of employing parallel CNN architectures for real-time audio processing are 
evaluated, and the testing phase restrictions are examined. We also look at future directions and possible 
enhancements to build on the success of the current model. 
6.1 Analysis of the Findings 

The experimental findings show that in terms of speech quality and noise reduction, the parallel CNN model 
performs better than baseline and conventional deep learning methods. The findings revealed the following 
important findings: 

 Improved Noise Reduction: With an average gain of 7.5 dB, the notable increase in Signal-to-Noise Ratio 
(SNR) indicates that the parallel CNN model can successfully reduce background noise without 
compromising the quality of the main speech signal. When contrasted with single-stream CNNs and 
conventional noise reduction methods, where noise removal was less effective, this is particularly 
noteworthy. 

 High Speech Intelligibility: According to the Mean Opinion Score (MOS) and Perceptual Evaluation of 
Speech Quality (PESQ) ratings, listeners thought the processed audio was very natural-sounding, little 
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distorted, and highly understandable. These subjective evaluations highlight how the model might improve 
human listening experiences even in difficult acoustic settings. 

 Real-Time Feasibility: The parallel CNN architecture is well-suited for real-time applications, as 
demonstrated by the average processing speed of 1.2x real-time. The parallel structure's capacity to handle 
several audio feature aspects at once helps to lower latency, which is essential for online audio applications 
like call centers, streaming, and video conferencing. 

 
6.2 Parallel CNNs' Effect on Speech Processing 
The parallel CNN design has important ramifications for online noise reduction and real-time audio processing: 

 The model's ability to isolate different audio characteristics, such high-frequency and low-frequency noise, 
is made possible by the parallel CNN modules' design, which allows each module to specialize in a 
particular noise component. This is known as the modular processing advantage. Unlike single-stream 
CNNs, which process the full audio input using a uniform processing approach, this modular design 
produces a comprehensive, high-quality audio augmentation output. 

 Adaptability to Diverse Noisy locations: Because of the parallel CNN structure's adaptability, this model 
may be tailored for a variety of noisy locations, including offices, public areas, and industrial settings. Such 
flexibility makes it a valuable tool for commercial audio enhancement and voice-activated systems. 

 Scalability in Computational Load: Although parallel CNN models naturally demand greater processing 
power, their effectiveness in real-time applications indicates that they may be further improved, maybe 
with the help of distributed processing systems or hardware acceleration. Widespread adoption across 
several platforms is made possible by the ability to install this architecture on a variety of devices, from 
high-end servers to low-power mobile devices. 

 
6.3 Restrictions and Difficulties 

Notwithstanding its benefits, the suggested model has drawbacks that can restrict its functionality in specific 
situations: 

 Performance in Low SNR Conditions: The model's ability to reduce noise is constrained at very low SNR 
levels (such as -5 dB). The model sometimes has trouble maintaining speech intelligibility while 
completely eliminating noise in situations like these, where the noise level is much higher than the speech 
signal. 

 Managing Several Noise Types at Once: Because the parallel CNN modules might not always be able to 
distinguish and attenuate each noise component, environments containing a variety of distinct noise sources 
such as street noise, crowd chatter, and music present a special problem. This implies that additional 
training on mixed-noise datasets or architectural changes may be necessary to boost the model’s handling 
of these complex audio settings. 

 Computational Requirements: The parallel CNN model requires a lot of computing power, especially when 
scaling for higher quality audio or many simultaneous audio streams, even if it was able to achieve real-
time processing speeds. Despite its efficiency, the design might need hardware acceleration (such as GPUs 
or TPUs) in order to be deployed in environments with limited resources, like embedded or mobile devices. 

 
6.4 Possible Enhancements 

The following changes are suggested in order to overcome these drawbacks and further optimize the model: 
 

 Including Attention Mechanisms: By adding attention layers to the parallel CNN design, the model may be 
able to concentrate more intently on salient speech characteristics, improving its ability to separate noise in 
situations with low signal-to-noise ratios or in environments with multiple noise sources. Since attention 
mechanisms assist models in allocating resources to pertinent audio segments, they have demonstrated 
promise in a variety of audio applications. 
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 Transfer Learning with Diverse Datasets: The model's adaptability may be increased by applying transfer 
learning techniques to more complex and diverse noise datasets. The model may be better able to 
generalize to unusual noise situations and enhance speech quality in practical applications if it has been 
pretrained on a larger variety of audio environments. 

 Combining recurrent networks (like LSTMs) or Transformer-based layers into a hybrid architecture could 
improve the model's temporal grasp of audio, even though the parallel CNN model already performs well. 
Higher SNR gains and speech intelligibility could be achieved by combining the sequential learning 
capabilities of RNNs or Transformer with the spatial processing of a parallel CNN in a hybrid model. 

 
6.5 Prospects for Further Research 
The results point to a number of directions for further study that might increase the model's usefulness and potential: 

 Examining Noise-Aware Training: The model may be more successful in very noisy settings if it is 
modified to dynamically modify its processing strength in response to the observed noise levels. The model 
may become more resilient with noise-aware training, which modifies its parameters for best results under 
various circumstances. 

 Development of Lightweight Parallel CNN Architectures: As interest in implementing speech enhancement 
models on mobile devices develops, the parallel CNN model may become more accessible by developing 
more effective, lightweight variants. Methods like knowledge distillation, quantization, and model pruning 
may lessen the computing load without sacrificing the model's excellent output. 

 Investigation of Domain Adaptation: Domain adaptation strategies could be investigated in order to 
increase the model's suitability for use with various languages and dialects. Additional training and fine-
tuning for multilingual contexts would increase the model's versatility and practical utility, as speech 
features differ greatly between languages. 

6.6 Synopsis of the Conversation 
With its great ability to reduce noise, excellent speech intelligibility, and efficient performance in a variety 

of audio situations, the suggested parallel CNN model is a noteworthy improvement in real-time speech 
augmentation. Even while the model is very effective, particularly in situations with moderate noise, some issues 
like extremely low SNR levels and the requirement for processing power point to areas that still requires work. 
Enhancing the model's adaptability, minimizing its computing footprint, and investigating hybrid and attention-
based architectures should be the main goals of future study. These improvements make the parallel CNN model a 
promising fundamental technology for online audio processing's real-time speech enhancement, with potential 
applications in a variety of sectors, such as entertainment, telecommunications, and smart assistants. 
 
7. FINAL THOUGHTS 

A new parallel Convolutional Neural Network (CNN) model for improving speech quality in real-time 
online audio processing applications was provided in this study. The suggested methodology addressed major issues 
in online audio environments where speech clarity and low latency are crucial by employing parallel CNN modules 
to provide improved performance in noise reduction, speech intelligibility, and real-time processing capabilities. 
Important Results 

The experimental findings demonstrated that the parallel CNN model performed better than single-stream 
CNN models and conventional noise reduction methods. In particular, it produced high ratings for both Mean 
Opinion Score (MOS) and Perceptual Evaluation of Speech Quality (PESQ), as well as an average improvement of 
7.5 dB in Signal-to-Noise Ratio (SNR), demonstrating that listeners thought the improved audio was more natural 
and clear. Furthermore, the model's 1.2x real-time processing speed attests to its appropriateness for real-time 
applications, such as voice-activated systems, live streaming, and video conferencing. 
Consequences for Audio Processing Online 

Online audio systems will be significantly impacted by the parallel CNN model's ability to handle a variety 
of noise conditions. The architecture's modular design, which processes different audio aspects concurrently, 
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expands its usefulness across a range of use scenarios by enabling a more thorough output for voice enhancement 
and noise reduction. The real-time processing efficiency attained also suggests that this architecture can be 
optimized for low-latency applications on a variety of devices, including mobile platforms and cloud servers. 
Restrictions and Prospects 

Notwithstanding its benefits, the model has drawbacks in situations with very low SNR and in mixed noise 
environments with multiple concurrent noise sources. To increase the model's performance in such difficult 
situations, future developments might incorporate attention techniques and hybrid architectures (such as CNN plus 
Transformers). The model's applicability could be further increased by investigating lightweight implementations 
that make use of model compression techniques like pruning and quantization. This would allow deployment on 
devices with limited resources. 
Final Thoughts 

To sum up, this study has shown that a parallel CNN-based method of voice enhancement works very well 
for providing audible, understandable speech in noisy, real-time settings. The architecture offers a viable answer for 
a variety of online applications' audio processing requirements due to its scalability and adaptability. In order to 
ensure that the model can be broadly implemented across a variety of platforms and industries, future research 
efforts should concentrate on improving computing efficiency and robustness to high noise circumstances. As deep 
learning and audio processing technology continue to progress, the parallel CNN model created in this work is a first 
step toward more flexible, high-performing real-time speech improvement solutions. 
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