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Abstract—In conventional integral control, increasing the gain 
K, though desirable value for reducing time error, can make the 
system response oscillatory . But in variable structure controller, 
it is found to have beneficial effect. In this paper, attempt 
have been made to design a variable structure power system 
stabilizer (VSPSS) by selecting favorably placed eigenvalues 
and the switching vector C, to achieve the desired dynamic 
performance. When the system is operates in the sliding mode, 
the response of the system is insensitive to plant parameter 
variations.[1] The controller selected has many attractive features 
like robustness towards parameter variations, modeling errors 
and unknown disturbances. It is simple in design and reduced 
order dynamics when in sliding mode.[2] Two distinct types of 
the system oscillations are considered in the paper i.e units at 
a generating station swinging with respect to the power system 
called as ‘local plant mode oscillations’ and the swinging of many 
machines in one part of the system against called as ‘interarea 
mode oscillations’. 

Index Terms—VSS, Power system stabilizer, Pole placement 
technique, slide mode controller. 

 

I. INTRODUCTION 

High initial responses, high gain excitation systems 

equipped with power system stabilizers (PSS) have been 

extensively used in modern power systems as an effective 

means of enhancing the overall system stability. A linear 

dynamic model of the system obtained by linearization of a 

nonlinear model around a normal operating point is usually 

adopted in PSS design.[3] 

To ensure the quality of power system stabilizers, it is neces- 

sary to design a control system, which deals with the control 

of loading of the generator depending on the frequency. Many 

techniques for PSS have been proposed since 1980s. When 

controller is designed, one of the problems is the parametric 

uncertainty in the power systems.[4] Therefore, in the design 

of controllers the uncertainties have to be considered .The 

usual design approach for PSS frequency controller employs 

the linear control theory to develop control law on the basis of 

the linearised model with fixed system parameters. However, 

as the system parameter cannot be completely known , [5] so 

the controller designed based on fixed parameter model may 

not work properly for the actual plants. Hence, it is important 

to consider linearized model. 

In this paper, a schematic approach based on pole placement 
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technique is developed for specifying the elements of switch- 

ing vector.[6] The VSS controller changes the structure in 

accordance with some law of structural change. This facili- 

tates, the new system to possess new properties which was 

not present in any of the individual structures previously. It 

can further be integrated with slide mode control to enhance 

dynamic performance of system.[7] 

Many techniques for PSS have been proposed since last two 

decades. Hsu and Chen [8] proposed optimal VSPSS for a 

machine infinite bus system as well as for a multi-machine 

system. The proposed VSPSS is optimal in the sense that the 

switching hyperplane is obtained by minimizing a quadratic 

performance index, the optimal selection of which is extremely 

difficult. The optimal H − n/K approach given by Chen 

and Malik [9] has some complexity like choosing both the 

uncertainty weighting function and the performance weighting 

function carefully. Also the controls based on the linear theory 

are restricted in performance for controlling the non-linear 

plant like the power system [10]. 

The variable structure controllers are insensitive to system 

parameter variations therefore, their realization is simple. A 

systematic procedure for the selection of the switching vector 

is extremely important for the design of VSCs.[11] 

In this paper, attempt have been made to design a VSPSS 

such that the resulting motion is described by equations with 

favorably placed eigenvalues. It should be noted that the 

desired locations of the poles of a closed loop system can be 

more conveniently prescribed to achieve the desired dynamic 

performance, and hence the switching vector C, as compared 

to the selection of weighting matrices needed to achieve the de- 

sired dynamic performance and hence C as in case of optimum 

VSPSS. The controller uses in this paper possesses attractive 

features like robustness to parameter variations, modeling 

errors and unknown disturbances, simplicity in design, reduced 

order dynamics when in sliding mode. The simulation results 

of the VSC theory shows dominance over conventional control 

theory, sensitivity analysis showing robustness over parameter 

variations and the model following approach is successfully 

applied as shown by changing parameters by 25% to 50% to 

show the efficacy of this control method. 

II. SYSTEM UNDER CONSIDERATION 

The system investigated, comprises a synchronous 

generator connected to an infinite bus through a double- 

circuit transmission line. A type 1 excitation system model 
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[12], which neglects saturation of the exciter and voltage 

limits of the amplifier output, has been considered. 

Two distinct types of the system oscillations are usually 

encountered in an interconnected power system [10]. One type 

is associated with units at a generating station swinging with 

respect to the power system. Such oscillations are referred 

to as ‘local plant mode oscillations’.[13]The frequencies of 

these oscillations are typically in the range 0.8 – 2.0 Hz. The 

second type of oscillations is associated with the swinging of 

many machines in one part of the system against machines 

in other parts. These are referred to as ‘interarea mode 

oscillations’, and have frequencies in the range 0.1 – 0.7 Hz. 

The basic function of the PSS is to add damping to both 

types of oscillations. 

It should be noted that only a local mode of the oscillation 

is encountered in a simple machine-infinite bus system and 

hence the effectiveness of the PSS in damping interarea modes 

of oscillations cannot be studied with a machine-infinite bus 

system. 

The overall excitation control system (including PSS) is 

designed to: 

1. Maximize the damping of the local plant mode oscillations 

as well as interarea mode without compromising the stability 

of other modes. 

2. Enhance the system transient stability. 

3. Not adversely affect system performance during major 

system upsets which cause large frequency excursions. 

4. Minimize the consequences of excitation system 

malfunction due to component failures. 

 

A. Dynamic model for PSS 

In general, the power system models are complex, 

nonlinear, dynamic in nature.[10] The usual practice is to 

linearise the model around the operating point and then 

develops the control laws. Since the system is exposed to 

small changes in loads during its normal operation, the 

linearised model will be sufficient to represent the power 

system dynamics. The simplified schematic diagram of a 

single-bus system is shown in Figure 1 [9]. 

The Linerised model is shown in Figure 2, where the 

expressions for parameters K1, K2 , .............., K6 are as 

shown below [10] 

The steady-state values of the d-q axis voltage and current 

components for the machine infinite-bus system for the 

nominal operating conditions are given below. These are 

expressed as functions of the steady-state terminal voltage 

Vto and steady-state real and reactive load currents IP O and 

IQO respectively. 

 

Eq0 = [(Vt0 + IQ0xq)2 + (Ip0xq)2]1/2 (1) 

 

V0 = [(Vt0 − IP 0re − IQ0xe)2 + (IP 0xe − IQ0re)2]1/2  (2) 

 

 

 

Fig. 1. Power system configuration for the single machine infinite bus system 

 

 

 

 

 

 
Fig. 2. Linearised small perturbation model of generator connected to infinite 
bus through transmission line 

sinδ0 = [Vt0 − Ip0(xq + xe) − rexq(I2 
2
 ) − 
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Vt0Iq0re]Eq0V0 (3) 

 

IQ0 = IP 0Vt0/Eq0 (4) 

 

Ido = [I2 xq + IQ0(Vto + IQ0xq)]/Eqo (5) 

 

Vq0 = [(Vt0 + IQ0xq)/Eq0]Vt0 (6) 

 

Vdo = IQ0xq (7) 

The dynamic model of the system is obtained from the 

transfer function model (Figure.6.2) in state space form as. 

x˙ = Ax + Bu + F ∆d (21) 

Where , 

x=State variable vector 

u=Control input vector 

∆d=Disturbances or nonlinearities input vector 

A=State matrix (6 X 6 ) 

B=Control matrix (6 X 1) 

F=Disturbances or nonlinearities matrix (6 X 1) 

Here in PSS the, 
′ 
q0 qo + x′ Ido (8)  

∆w 
 

Where, 
Id, Iq = direct and quadrature axis components of the armature ∆δ 

currents 

V , V =direct and quadrature axis components of the terminal 
x= 
 ∆E′  

  
(22) 

voltage 

E′ =voltage proportional to direct axis flux linkages 

δ=angle between quadrature axis and infinite bus 

V0=infinite bus volta 

Eq=open-circuited terminal voltage 

Subscript 0=steady state value 

The constants K1 – K6 are evaluated using the relations given 

below considering zero external resistance i.e. re = 0 for the 

sample problem investigated [14]. 

∆VR 

∆VE 

∆d = ∆Tm 

 

K1 = 
xq−x′ 

xe+x′
 

Q0V0sinδ0 + 
Eq0V0cosδ0 

xe+xq 
(9) 

 

V0sinδ0 

xe+x′d 

 

x′d+xd 
xd+xe 

(10) 

 

(11) 
 

K4 = xd−x′d V0sinδ0 (12) 
d  

0 
 

 

  1   

K5 = xe+xq Vto 
V0cosδ0 − xe+x′d Vt0 

V0cosδ0 (13) 

 V  B=  ; F=   (23) 
K6 = xe qo (14)  0   0  

xe+x′d Vto  K     

The state equations can be written [24], 

A  0  
 

III. DESIGN OF VARIABLE STRUCTURE CONTROLLER: 

The basic philosophy of the variable structure approach 

is simply obtained by contrasting it with the linear state 

regulator design for the single input system. 

 

x˙ = Ax + Bu (24) 

 

In the state regulator design, the structure of the feedback is 

fixed as 
 

u = −KT (25) 

 

The state feedback gain vector K is chosen according to 

various design procedures, such as eigenvalue placement or 

E 

K2 = 

K3 = 

2H 

 
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is  called  the  switching 

 

quadratic minimization. 

The variable structure controller design problem is then select 

the parameters of each of the structures and to define the 

switching logic [4]. . 

The change in structure of the controller takes place on the 

hyper plane 

 

s = CT = 0 (26) 

 

Where C is a constant vector. This hyper plane is also called 

as the switching hyper plane. 

When the control signal u is a function of the state vector 

x undergoes discontinuities on the plane s = 0, the velocity 

vector also undergoes discontinuities on the same plane. If 

the trajectories are directed towards the plane s = 0, sliding 

mode will appear in the plane. The pair of inequalities, 

 

limx→ 0 −s˙ > 0  and  limx→ 0 −s˙ < 0 (27) 

 

are sufficient condition for the sliding mode to exist. 

The control signal is a piecewise linear function of x with 

discontinuous coefficients u = −ΨT x 

IV. SELECTION OF A SWITCHING VECTOR USING POLE 

ASSIGNMENT TECHNIQUE 

 

The design procedure is to select a switching vector using 

pole assignment technique as described below [4], [6]: 

Consider the linear system, 

 

x˙ = Ax + Bu (30) 

where x is a state vector of dimension (nx1), u is control 

vector of dimension (mx1) and A and B are constant matrices 

of dimensions (n x n) and (n x m) respectively. 

Define the coordinate transformation 

 

z = Mx (31) 

 

Such that 

 

MB=  
0 

(32) 
B2 

Where M is a non-singular (n x n) matrix and B2 is a 

non-singular (m x m) matrix. 

 
−1 

  
α ........................... fx s > 0 

z˙ = MAM z + MBu (33) 

βi............................................ fxis < 0 

where αi and βi are constants and i= 1,2,. ..... ,n. 

It should be noted that the switching of the state feedback 

From equation (24) and (31) and using equation (32), equation 

(33) can be written in the form, 
 
z˙1

 

=

 
A11 A12

  
z1

 

+

  
0
 

(34)

 

gains occur on discontinuity It should be noted that the 

switching of the state feedback gains occur on discontinuity 
z˙2 A21 A22 z2 B2 

plane s = 0. The choice of controls should ensure that they 

give rise to the sliding mode on discontinuity plane s = 0. 

The switching vector C is chosen so that sliding motion has 

the desired properties. 

Since n = 6 and m = 1, 

 
T 

C1  C2  C3  C4  C5  C 
vector. 

 

The control law is of the form 

u = − 
Σ6 

Ψixi 

 

where the precise constant gains Ψ are given by above 

equation (28). 
The design procedure consist of determining the elements 

where, A11, A21, A12, A22 are respectively [(n-m) x (n- m)], 

[(n-m) x m],[m x (n-m)], and [ m x m ] submatrices. 

Hence, 

z˙1 = A11z1 + A12z2 

z˙2 = A21z1 + A22z2 + B2u (35) 

 

The equation for the switching surface as (26) referring again 

i.e., 

 

s = CT x = 0 i = 1, 2, 3 ..... n 

Hence, we get, 

s = CT M−1z = 0 i = 1, 2, 3 ..... n 

 

specifies the motion of the system in the sliding mode. 

Writing, 

of the switching vector C and the feedback gains Ψ so that 

the control u which depends on them can satisfy certain 
CT M−1 =

 
CT C2

 
(36) 

practically acceptable dynamic performance measures and 

retain the nominal frequency of the system in steady state. 

These dynamic measures relate to the rise time, overshoot, 

settling time of the system or performance index of the system 

where C1 and C2 are n-1 column vector and scalar 

respectively. 

Equations (35) and (36) uniquely determine the dynamics 

in the sliding mode over the intersection of the switching 

hyperplane s(x)=0. We can write, 

Ψ = 
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i.e. Ac in the sliding mode can be placed 

1 x2 

    

 



 

 


 

0 0 0 0.1 2.0 0 

 

  

0 

0 

0 

x = = 

 

0 

 

  
0 

0 
    

0 

 

s = CT z1 + C2z2 = 0 (37) 

 

The subsystem described by equation (35) may be regarded 

as an open loop control system with state vector z1 and 

control vector z2, without loss of generality, we assume that 

C2 = 1 and the form of control z2 being determined by 

equation (1.36), that is, 

 

z2 = CT z1 (38) 

 

Using equation (35) and (38) we obtain the equations of the 

sliding mode in closed loop form as 
z˙1 = (A11 − A12CT )z1 = Acz1 (39) 

xe = 0.4  re = 0.0 

 

Operation condition: 

 

P = 1.0 Q = 0.05 

Vr0 = 1.0  f = 50Hz 

The initial d-q axis current and voltage components and 

torque angle needed for evaluating the K constants are 

obtained from the steady-state equations given in (1) to (8). 

These are as follows: 

Vd0 = 0.8211p.u  Id0 = 0.8496p.u Eq0 = 0.8427p.u 

Vq0 = 0.5708p.u Iq0 = 0.5297p.u.  V0 = 1.0585p.u. 
1 

δ0 = 77.400p.u. 

The eigenvalue of the matrix Ac may be placed arbitrarily 

in the complex plane. If pair (A, B) is controllable 

then the pair (A11, A12) is also controllable. If the pair 

(A11, A12) is controllable then the eigenvalues of the matrix 
T 
1 

arbitrarily by a suitable choice of vector C1. 
Hence, the algorithm for realization of switching vector and 

switching hyperplane can be summarized as follows: 

 

1) Select transformation matrix M that satisfy equation (32). 

The constants K1 – K6 are evaluated using the relations given 

(9) to (14) considering zero external resistance i.e. re = 0.0 

for the sample problem investigated. We get these values as: 

 

K1 = 1.15839 K2 = 1.43471 K3 = 0.36 

K4 = 1.83643  K5 = −0.11133  K6 = 0.31711 

After designing the switching vector using pole assignment 

technique the results are : 

The state space model is given by specifying 

2) Compute the vector C1 such that the eigenvalues 

λ1, λ2 ....... λn−1 of the matrix (A1−A1CT ) or Ac characterizing 

the dynamics in the sliding mode has desired placement. 

∆ω 

 

 


x1

 

  
∆E′q x3 

3) Choose the equation of the switching hyperplane to be 

of the form s = [C1T 1]Mx = 0 

 

4) Generally assume , C1 = [C11C12 ........ C1n − 1]T (40) 

 

 
V. EXAMPLE 

∆Efd x4 

∆VR x5 

∆VE x6 

0 −0.1158  −0.1435 0 0 0 
314 0 0 0 0 0 

x˙ = 
 0 −0.3061  −0.4630  0.1667 0 0 

 

 

 

 
x+ 

 

Consider the PSS system as shown in Figure 2 and the 
0 111.330 −317.11 0 −20.0  −1000 
0 0 0 0.01 0.2 −2.0 

problem of a single control area. The nominal parameters of 0 

the system and the operating conditions used for the sample 


0.1

 

  
problem investigated are given below [14], [15].   u +   ∆Tm

 

All data are given in per unit of value, except that H and 

time constants are in seconds. 

Generator: 

1000 
 

 
 

 0  
 

 

H = 5.0s  T′d0 = 6.0s 
Let us assume , 

xd = 1.6 x′d = 0.32 xq = 1.55 

IEEE type-1 excitation system: 

C1 =
 

C11 C12 C13 C14 C15 

 T 
(41) 

KA = 50.0 TA = 0.05s 

KE = −0.05 TE = 0.5s 

KF = 1.55  TF = 0.5s 

Transmission line: 

Now, here we have to find the C1T for the desired eigenvalues 

or pole placement. 

 

The characteristic equation of the described system is 

S5 + (C15 − a55)S4 + (C14 − a54)S3 + (C13 + a53S2) + 

(C12 − a52)S + (C11 − a51) = 0 (42) 

0 

 

 
∆δ 
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x2 

    

  

  
0 

  

72.068)S2 + (C12–1.477)S + (C11–0.61) = 0 (43) 
 
∆V 



 

x5


 

Hence, the switching vector C = M
 
CT C

 T 
and C2 = 1 0 

720 

 

 

  

 

R 

1 2 

 

Equation (42) reduces to, ∆ω 

 

 


x1

 

  
S5 + (C + 2.363)S4 + (C + 37.053)S3 + (C ∆E′q x3 + x = = 

15 14 13 ∆Efd
 

 

x4
 

∆VE x6 

Here, let the desired poles are at locations, 

λ1 = −8.0 λ2 = −8.5  λ3 = −9.0  λ4 = −9.5 

λ5 = −10.0 

From this we get the desired characteristic equation. As 

 

S5 + 45.0S4 + 808.75S3 + 7256.25S2 + 32501.5S + 

58140 = 0 (44) 

 

By comparing (43) and (44), we will get, 

C = 42.637 

For the above values of A, B and F, and when xe = 0.4 ,we 

get the characteristic equation as, 

 

S6 + 22S5 + 284S4 + 1011S3 + 8923S2 + 6095S + 11021 

 

Let the model selected is critically damped model such 

that , 

 

 

If this model has the eigenvalues as –1, -2, -3, -4, -5 and 

–6 and we are representing state model in (6.61) in phase 

canonical form, then we have, 
15 

C14 = 771.697 

C13 = 7184.182 

0 1 0 0 0 0 
0 0 1 0 0 0 

  
C12 

C11 

= 32502.977 

= 58140.61 
Am = 

 

 
 

0 0 0 1 0 0 
0 0 0 0 1 0 

 0 0 0 0 0 1  
 

 
 

(49) 

C1 =
 

C11 C12 C13 C14 

T 
C15 

 
0 
 

C1 = [−82146.276  188.818  2647.961  −32.674  539.925] 

 

0 

Bm = 
0

 

  

 

(50) 

∴ C = [−82146.276  188.818  2647.961  −32.674  1.0  539.925] ( 4 5
T
)  

he switching surface σ = Ce is chosen as, 

Also, the control signal u is given by the equation (30) and 

can be written as 

u = −Ψ1x1 − Ψ2x2 

 

— Ψ3x3 

 

— Ψ4x4 

 

— Psi5x5 

 

— Ψ6x6 

 

(46) 

σ = C1e1 + C2e2 + C3e3 + C4e4 + C5e5 + C6e6 

σ˙ = C1e˙1 + C2e˙2 + C3e˙3 + C4e˙4 + C5e˙5 + C6e˙6 

where, 
 

The gains Ψ are chosen in such a way that control effort 

required is moderate and making use of the performance 

index [5]. Their values are taken as 

e 1̇ = e2 

e˙2 = e3 + 0.0001∆Tm 

e˙3 = e4 + 0.0023∆Tm 

α1 = α2 = 15 α3 = 0  α4 = 0  α5 = 0  α6 = 0 
e˙4 = e5 − 0.0066∆Tm 
e˙5 = e6 − 0.0941∆Tm 

β1 = β2 = −15 β3 = 0 β4 = 0 β5 = 0 β6 = 0 

 

 

 

VI.  VARIABLE STRUCTURE MODEL FOLLOWING 

CONTROLLER DESIGN FOR PSS SYSTEM 

e˙6  = –720xm1 − 1764xm2–1204xm3–665xm4–175xm5 − 

21xm6 + 720r + 11021x1 + 6095x2 + 8923x3 + 1011x4 + 

284x5 + 22x6 − u + 1.2674∆Tm (51) 

 

The switching vector was designed by using pole placement 

technique as explained before. 
The poles of the matrix [A11–A12C11] were chosen as :- 

m m 

The state space model of plant is considered as, 

 

x˙ = Ax + Bu + F ∆Tm (47) 

and 

-8.0 , -8.5 , -9.0 , -9.5 and -10.0 . The transformation matrix 

considered was, 

 

M = I6 = 6X6 IdentityMatrix 

, we get, −729  −1764  −1204  −665  −175  −21 1 Further making the manipulation T−1CT 

∆δ 
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Hence, we get, 

 

CT =
 

58140  32501.5  7256.25  808.75  45  1
 

(52) 

 

The error is defined as, 

 

ei = xmi–xi i = 1, 2, 3, 4, 5, 6 (53) 
 

And control function is 

 

u = −KT V –K14 

 

where, 

 

 

(54) 

 
Fig. 3. The dynamic response of ∆ω and ∆δ for 1% step increase of ∆Tm 

with nominal parameters 

 

equation (51) , (52) , (53) , (54) and (55) we can write, 

 

σ˙ = 58140e2 + 32501.5(e3 + 0.0001∆Tm) + 

7256.25(e4  + 0.0023∆Tm) + 808.75(e5 − 

0.0066∆Tm) + 45(e6 − 0.0941∆Tm) + 1(–720xm1 − 

1764xm2–1204xm3–665xm4–175xm5 − 21xm6 + 720r + 

11021x1 + 6095x2 + 8923x3 + 1011x4 + 284x5 + 

22x6)–(−K1e1 − K2e2 − K3e3 − K4e4 − K5e5 − K6e6 − 

K7x1–K8x2–K9x3–K10x4–K11x5–K12x6–K13r–K14) + 

1.2674∆Tm 

After reduction we can write, 

 

σσ˙ = (K1–720)σe1+(K2+56376)σe2+(K3+31297.5)σe3+ 

(K4 + 6591.25)σe4 + (K5 + 633.75)σe5 + (K6 + 24) e6 + 

(K7 − 10271)σx1 + (K8–4331)σx2 + (K9–7719)σx3 + 

(K10–346)σx4 + (K11 − 109)σx5 + (K12 − 1)σx6 + (K13 + 

720)σr + (K14 + 11.6346∆Tm)σ (56) 

 

We will find the controller by satisfying condition σσ˙ ≤ 0. In 

addition, we can take term s instead of σ to understand that 

this is related to switching hyperplane. Letting each term in 

bracket of above equation equating separately less than zero 

we can obtain the controller gains. 

We get the controller gains as, 

K =0 ifse >0 K =721 ifse <0 

Fig. 4. The dynamic response of ∆ω and ∆δ for 1% step increase of ∆Tm 

with nominal parameters with different feedback gains. 

 
 

Fig. 5. The dynamic response of ∆ω and ∆δ for 1% step increase of ∆Tm 

with Variations in parameters i.e. line reactance change 
 

 

 

The initial conditions for model were chosen as, 

 

xm1 = xm2 = xm3 = xm4 = xm5 = xm6 = 0.8 (58) 

 

VII. SIMULATION RESULTS AND DISCUSSIONS 

Figure 3 shows the simulation results of dynamic response 

of ∆ω and ∆δ when the system is subject to 1% step 

change of ∆Tm. Results using the integral controller alone 
1 1 1 1 

K2=−56377 ifse2>0 K2=0 ifse2<0 

K3=−31298 ifse3>0 K3=0 ifse3<0 
K4=−6592 ifse4>0 K4=0 ifse4<0 

K5=−634 ifse5>0 K5=0 ifse5<0 

K6=−25 ifse6>0 K6=0 ifse6<0 

K7=−10272 ifsx1>0  K7=0  ifsx1<0 
K8=−4332 ifsx2>0 K8=0 ifsx2<0 

K9=−7720 ifsx3>0 K9=0 ifsx3<0 

K10=−347 ifsx4>0 K10=0 ifsx4<0 

K11=−110 ifsx5>0 K11=0 ifsx5<0 
K12=−2 ifsx6>0 K12=0 ifsx6<0 

K13=−721 ifsr>0 K13=0 ifsr<0 

K14=−12  ifs>0  K14=0  ifs<0 

The initial conditions for plant were chosen as, 

 

x1 = x2 = x3 = x4 = x5 = x6 = 0.1 (57) 

(without VSS) are also included for comparison purposes 

and they clearly demonstrate the improvement in dynamic 

performance in the sense of maximum deviation in frequency, 

rise and settling time. It can be clearly seen that the responses 

obtained with VSPSS are well damped 

 

There is one major drawback associated with VSC, namely 

chattering. The control signal emerging from the control law 

is seen to comprise high frequency components which leads 

to control chattering is highly undesirable because it involves 

extremely high control activities and it may excite high 

frequency un-modeled dynamics.[1] However this drawback 
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Fig. 6. The model following control for PSS with nominal parameters i.e. 
xe = 0.4 (without insertion of low pass filter) 

 

Fig. 7. The model following control for PSS with nominal parameters i.e. 
xe = 0.4 (with insertion of low pass filter) 

 

 

 

can be overcome by maintaining sliding motion inside a 

small boundary layer neighbouring the switching line or by 

insertion of low pass filter ahead of the plant to yield a 

smooth control signal. The transfer function of low pass filter 

used is [9]. 

G(S) = 0.1/(S + 20) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The model following control for PSS with +50% variations in all 
parameters (with insertion of low pass filter) 

 
 

Fig. 9. The model following control for PSS with -50% variations in all 
parameters (with insertion of low pass filter) 
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It is observed that the system remains insensitive to such 

parameter variations and the model following control is 

successively implemented. It is noticeable that the other 

methods of switching vector design can be implemented with 

little effort. 

 

VIII. CONCLUSION 

In this paper a design technique based on the concept of 

pole placement has been applied for the design of the variable 

structure power system stabilizers. Appropriate selection of 

switching vector is very important for providing large improve- 

ment in system performance and the concept of pole placement 

establishes a systematic procedure for the proper choice of 

the switching vector. The VSS controller exhibits insensitivity 

to such parameter variations and disturbances. The switching 

logic of the VSS controller is simple and seems amenable 

for practical implementation. It is observed that the system 

remains insensitive to such parameter variations and the model 

following control is shown to be effective for power system 

stabilizers. 
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