New Sort of Quotient and Homeomorphisms in Topological Spaces

¹B.Meera Devi ²R.Rajasubramaniam ³S.Abirami

 ^{1,3} Assistant Professor, PG & Research Department of Mathematics,
Sri S. Ramasamy Naidu Memorial College, Sattur-626203, Tamil Nadu, India.

² Assistant Professor, Department of Mathematics, Arulmigu Palaniandavar College of Arts and Culture, Palani-624601, Tamil Nadu, India.

Abstract

The aim of this paper is to introduce two new classes of maps called $\delta \ddot{g}$ -quotient maps and $\delta \ddot{g}^*$ -quotient maps and obtain several characterizations and some of their properties. We further introduce and study new class of generalizations of homeomorphism called $\delta \ddot{g}$ -homeomorphism using $\delta \ddot{g}$ -closed sets. Also we introduce generalization of homeomorphism called $\delta \ddot{g}c$ -homeomorphism. Basic properties of these two mappings are studied and the relation between these types and other existing ones are established.

Keywords and Phrases : $\delta \ddot{g}$ -closed set, $\delta \ddot{g}$ -continuous, $\delta \ddot{g}$ -quotient maps, $\delta \ddot{g}$ -homeomorphism. AMSsubjectclassification : 54C55

1 Introduction:

Maki et al [7], introduced the notions of generalized homeomorphism (briefly g-homeomorphism). Devi et al [4] introduced two classes of mappings called generalized semi- homeomorphism (briefly gs- homeomorphism) and semi- generalized homeomorphism (briefly sg-homeomorphism). In this present paper we introduce two new classes of maps called $\delta \ddot{g}$ -quotient maps and $\delta \ddot{g}^*$ -quotient maps and obtain several characterizations and some of their properties. We further introduce and study new class of generalizations of homeomorphism called $\delta \ddot{g}$ -homeomorphism using $\delta \ddot{g}$ -closed sets. Also we introduce generalization of homeomorphism called $\delta \ddot{g}c$ -homeomorphism. Basic properties of these two mappings are studied and the relation between these types and other existing ones are established.

2 Preliminaries

Throughout this paper (X, τ) and, (Y, σ) and (Z, η) represent non-empty topological spaces on which no separation axioms are assumed unless or otherwise mentioned. For a subset A of X, cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively.

Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. The δ -interior [15] of a subset A of X is the union of all regular open set of X contained in A and is denoted by $\operatorname{Int}_{\delta}(A)$. The subset A is called δ -open [15] if $A = \operatorname{Int}_{\delta}(A)$, i.e. a set is δ -open if it is the union of regular open sets. the complement of a δ -open is called δ -closed. Alternatively, a set $A \subseteq (X, \tau)$ is called δ -closed [15] if $A = cl_{\delta}(A)$, where $cl_{\delta}(A) = \{x : int(cl(U)) \cap A \neq \phi, U \in \tau \text{ and } x \in U\}.$

Definition 2.2. A subset A of (X, τ) is called

(i) semi-generalized closed (briefly sg-closed) set [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is a semi-open set in (X, τ) .

(ii) generalized semi-closed (briefly gs-closed) set [1] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ) .

- (iii) $\delta \hat{g}$ -closed set [6] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is a \hat{g} open set in (X, τ) .
- (iv) $\delta \ddot{g}$ -closed set [9] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is \ddot{g} -set.

The complement of a sg-closed (resp. gs-closed, $\delta \hat{g}$ -closed and $\delta \ddot{g}$ -closed) set is called sg-open (resp. gs-open, $\delta \ddot{g}$ -open).

Definition 2.3. Recall that a function $f: (X, \tau) \to (Y, \tau)$ is called

- (i) g-continuous [2] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ) .
- (ii) $\delta \hat{g}$ -continuous [6] if $f^{-1}(V)$ is $\delta \hat{g}$ -closed in (\mathbf{X}, τ) for every closed set V of (\mathbf{Y}, σ) .
- (iii) $\delta \hat{g}$ -irresolute [6] if $f^{-1}(V)$ is $\delta \hat{g}$ -closed in (\mathbf{X}, τ) for every $\delta \hat{g}$ -closed set \mathbf{V} of (\mathbf{Y}, σ) .

- (iv) $\delta \ddot{g}$ -continuous[9] if $f^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X, τ) for every closed set V of (Y, σ) .
- (v) $\delta \ddot{g}$ -irresolute[8] if $f^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X, τ) for every $\delta \ddot{g}$ closed set V of (Y, σ) .

Definition 2.4. A map $f: (X, \tau) \to (Y, \sigma)$ is called

- (i) generalized closed (briefly g-closed) (resp. g-open) [12] if the image of every closed (resp. open) set in (X, τ) is g-closed (resp. g-open) in (Y, σ) .
- (ii) δ -closed [13] if f(V) is δ -closed in (Y, σ) for every δ -closed set V of (X, τ) .
- (iii) $\delta \hat{g}$ -closed [6] if the image of every closed set in (X, τ) is $\delta \hat{g}$ -closed in (Y, σ) .
- (vi) $\delta \ddot{g}$ -closed[11] if the image of each closed set in (X, τ) is $\delta \ddot{g}$ -closed in (Y, σ) .

Definition 2.5. Recall that a map $f:(X, \tau) \rightarrow (Y, \tau)$ is called

- (i) g-homeomorphism [7] if f is bijection, g-open and g-continuous.
- (ii) gs-homeomorphism [4] if f is bijection, gs-open and gs-continuous.
- (iii) $\delta \hat{g}$ -homeomorphism [6] if f is bijection, $\delta \hat{g}$ -open and $\alpha \hat{g}$ -continuous.

Definition 2.6. A surjective map $f: (X, \tau) \to (Y, \sigma)$ is said to be

- (i) a quotient map [5], provided a subset V of (Y, σ) is open in (Y, σ) if and only if $f^{-1}(V)$ is open in (X, τ) .
- (ii) a δ -quotient map [14], provided a subset V of (Y, σ) is δ -open in (Y, σ) if and only if $f^{-1}(V)$ is δ -open in (X, τ) .
- (iii) a $\delta \hat{g}$ -quotient map [8], if f is $\delta \hat{g}$ -continuous and $f^{-1}(V)$ is closed in (X, τ) implies V is $\delta \hat{g}$ -closed in (Y, σ) .

Proposition 2.7. [9] Every δ -closed set in X is $\delta \ddot{g}$ -closed set.

Proposition 2.8. [9] Every $\delta \hat{g}$ -closed set is $\delta \ddot{g}$ -closed.

3 $\delta \ddot{g}$ -Quotient mappings

We introduce the following definition.

Definition 3.1. A surjective map $f: (X, \tau) \to (Y, \sigma)$ is said to be $\delta \ddot{g}$ -quotient map if f is $\delta \ddot{g}$ -continuous and $f^{-1}(V)$ is closed in (X, τ) implies V is $\delta \ddot{g}$ -closed in (Y, σ) .

Example 3.2. Let $X = \{a, b, c\}$, $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{p\}, \{q\}, \{p, q\}, \{p, r\}, Y\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = r, f(b) = q and f(c) = p. Then the function f is $\delta \ddot{g}$ -quotient.

Remark 3.3. The concepts of $\delta \ddot{g}$ -quotient maps and quotient maps are independent of each other as shown by the following examples.

Example 3.4. Let $X = \{a, b, c\}, Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{p\}, \{q\}, \{p, q\}, Y\}$. Define a function $f: (X, \tau) \to (Y, \sigma)$ by f(a) = q, f(b) = p and f(c) = r. Clearly f is an $\delta \ddot{g}$ -quotient map. The set $\{p\}$ is open in $\{Y, \sigma\}$ but $f^{-1}(\{p\}) = \{b\}$ is not open in (X, τ) . This implies that f is not continuous and hence f is not an quotient map.

Example 3.5. Let $X = \{a, b, c\}$, $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{q\}, \{p, q\}, \{q, r\}, Y\}$. Define a map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = q, f(b) = p and f(c) = r. Clearly f is an quotient map. The set $\{q\}$ is closed in (Y, σ) but $f^{-1}(\{q\}) = \{a\}$ is not $\delta \ddot{g}$ -closed in (X, τ) . This implies that f is not $\delta \ddot{g}$ -continuous and hence f is not an $\delta \ddot{g}$ -quotient map.

Theorem 3.6. Every $\delta \hat{g}$ -quotient map is $\delta \ddot{g}$ -quotient map.

Proof. Suppose $f: (X, \tau) \to (Y, \sigma)$ is an $\delta \hat{g}$ -quotient map. Let V be a closed set in $\{Y, \sigma\}$. Since f is $\delta \hat{g}$ -continuous, $f^{-1}(V)$ is $\delta \hat{g}$ -closed in $\{X, \tau\}$. By Proposition 2.8, $f^{-1}(V)$ is $\delta \ddot{g}$ -closed in $\{X, \tau\}$. Therefore f is $\delta \ddot{g}$ -continuous. Let $V \subset (Y, \sigma)$ and $f^{-1}(V)$ closed in $\{X, \tau\}$. Then $f(f^{-1}(V)) = V$ is $\delta \hat{g}$ -closed set in (Y, σ) and hence V is $\delta \ddot{g}$ -closed in (Y, σ) . Hence f is $\delta \ddot{g}$ -closed map. Thus f is $\delta \ddot{g}$ -quotient map.

Remark 3.7. The converse of the above theorem is not true in general as shown in the following example.

Example 3.8. Let $X = \{a, b, c\}, Y = \{p, q, r\}$ $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{p\}, \{q\}, \{p, q\}, \{q, r\}, Y\}$. Define a function $f: (X, \tau) \to (Y, \sigma)$ by f(a) = p, f(b) = q and f(c) = r. Clearly f is a $\delta \ddot{g}$ -quotient map. The set $\{p, r\}$ is closed in (Y, σ) but $f^{-1}\{p, r\} = \{a, c\}$ is not $\delta \hat{g}$ -closed in (X, τ) . This implies f is not $\delta \hat{g}$ continuous and hence f is not $\delta \hat{g}$ -quotient map.

Remark 3.9. The concepts of $\delta \ddot{g}$ -quotient maps and δ -quotient maps are independent of each other as shown in the following examples.

Example 3.10. Let $X = \{a, b, c\}$, $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{p\}, \{p, q\}, Y\}$. Define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = r, f(b) = p and f(c) = q. Clearly f is a δ -quotient map. However f is not $\delta \ddot{g}$ -quotient because $f^{-1}\{r\} = \{a\}$ is not $\delta \ddot{g}$ -closed in (X, τ) where $\{r\}$ is closed in (Y, σ) .

Example 3.11. Let $X = \{a, b, c\}, Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{p\}, \{r\}, \{p, r\}, Y\}$. Define a function

 $f: (X, \tau) \to (Y, \sigma)$ by f(a) = p, f(b) = q and f(c) = r. Then f is $\delta \ddot{g}$ quotient but not δ -quotient, because $f^{-1}(\{q\}) = \{b\}$ is not δ -closed in (X, τ) where $\{q\}$ is δ -closed in (Y, σ) .

Theorem 3.12. Every $\delta \ddot{g}$ -quotient map is $\delta \ddot{g}$ -closed.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be $\delta \ddot{g}$ -quotient map. Let V be a closed set in (X, τ) . That is $f^{-1}(f(V))$ is closed in (X, τ) . Since f is $\delta \ddot{g}$ -quotient, f(V) is $\delta \ddot{g}$ -closed in (Y, σ) . This shows that f is $\delta \ddot{g}$ -closed map. \Box

Remark 3.13. The converse of the above theorem is not true in general as shown in the following example.

Example 3.14. Let $X = \{a, b, c\}$, $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{q\}, \{p, r\}, Y\}$. Define function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = q, f(b) = r and f(c) = p. Then f is $\delta \ddot{g}$ -closed map. The set $\{q\}$ is closed in (Y, σ) but $f^{-1}(\{q\}) = \{a\}$ not $\delta \ddot{g}$ - closed in (X, τ) . This implies that f is not $\delta \ddot{g}$ - continuous and hence f is not an $\delta \ddot{g}$ - quotient map.

Theorem 3.15. Every $\delta \ddot{g}$ -quotient map is weakly $\delta \ddot{g}$ -closed.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be $\delta \ddot{g}$ -quotient map. Let V be δ -closed in (X, τ) . That is $f^{-1}(f(V))$ is δ -closed in (X, τ) . Every δ -closed is closed and hence $f^{-1}(f(V))$ is closed in (X, τ) . Since f is $\delta \ddot{g}$ -quotient, f(V) is $\delta \ddot{g}$ -closed in (Y, σ) . Hence f is weakly $\delta \ddot{g}$ -closed map. \Box

Remark 3.16. The converse of Theorem 3.15 is not true in general. The map f is defined in 3.14 is weakly- $\delta \ddot{g}$ -closed but not $\delta \ddot{g}$ -quotient.

Proposition 3.17. If $f : (X, \tau) \to (Y, \sigma)$ is surjective, $\delta \ddot{g}$ -closed and $\delta \ddot{g}$ -continuous. Then f is $\delta \ddot{g}$ -quotient map.

Proof. Let $f^{-1}(V)$ be closed in (X, τ) . Since f is $\delta \ddot{g}$ -closed, $f(f^{-1}(V))$ is $\delta \ddot{g}$ -closed set in (Y, σ) . Hence V is $\delta \ddot{g}$ -closed set, as f is surjective, $f(f^{-1}(V)) = V$. Thus f is an $\delta \ddot{g}$ -quotient map. \Box

Theorem 3.18. Let $f: (X, \tau) \to (Y, \sigma)$ be closed surjective, $\delta \ddot{g}$ -irresolute and $g: (Y, \sigma) \to (Z, \eta)$ be an $\delta \ddot{g}$ -quotient map. Then $g \circ f$ is an $\delta \ddot{g}$ -quotient map.

Proof. Let V be any closed set in (Z,η) . Since g is a $\delta \ddot{g}$ -quotient map, it is $\delta \ddot{g}$ -continuous. So $g^{-1}(V)$ is $\delta \ddot{g}$ -closed set in (Y,σ) . Since f is $\delta \ddot{g}$ irresolute, $f^{-1}(g^{-1}(V))$ is $\delta \ddot{g}$ -closed set in (X,τ) . That is $(g \circ f)^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X,τ) . This implies $g \circ f$ is $\delta \ddot{g}$ -continuous. Also assume that $(g \circ f)^{-1}(V)$ is closed in (X,τ) for $V \subset (Z,\eta)$. That is $f^{-1}(g^{-1}(V))$ is closed in (X,τ) . Since f is closed map, $f(f^{-1}(g^{-1}(V)))$ is closed in (Y,σ) . That is $g^{-1}(V)$ is closed in (Y,σ) because f is surjective. Since g is $\delta \ddot{g}$ -quotient map, V is $\delta \ddot{g}$ -closed set in (Z,η) . Thus $g \circ f$ is a $\delta \ddot{g}$ -quotient map. \Box **Theorem 3.19.** If $f: (X, \tau) \to (Y, \sigma)$ is a $\delta \ddot{g}$ -quotient map and $g: (X, \tau) \to (Z, \eta)$ is a continuous map such that it is constant an each set $f^{-1}(\{y\})$ for $y \in Y$. Then g induces an $\delta \ddot{g}$ -continuous map $h: (Y, \sigma) \to (Z, \eta)$ such that $h \circ f = g$.

Proof. Since g is constant on $f^{-1}(\{y\})$ for each $y \in Y$, the set $g(f^{-1}(\{y\}))$ is a one point set in Z. If h(y) denote this point, then it is clear that h is well defined and for each $x \in X$, h(f(x)) = g(x). Now we claim that h is $\delta \ddot{g}$ -continuous. Let V be closed set in (Z,η) . Since g is continuous, $g^{-1}(V)$ is closed in (X,τ) . That is $g^{-1}(V) = (h \circ f)^{-1}(V) = f^{-1}(h^{-1}(V))$ is closed in (X,τ) . Since f is $\delta \ddot{g}$ -quotient map, $h^{-1}(V)$ is $\delta \ddot{g}$ -closed in (Y,σ) . Hence h is $\delta \ddot{g}$ -continuous.

We introduce the following definition.

Definition 3.20. A map $f: (X, \tau) \to (Y, \sigma)$ is said to be $\delta \ddot{g}^*$ -quotient map if f is surjective, $\delta \ddot{g}$ -irresolute and $f^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X, τ) implies V is closed in (Y, σ) .

Example 3.21. Let $X = \{a, b, c\}, Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{p\}, \{r\}, \{p, r\}, Y\}$. Define a map $f : (X, \tau) \to (Y, \tau)$ by f(a) = p, f(b) = r and f(c) = q. Clearly f is $\delta \ddot{g}^*$ -quotient map.

Theorem 3.22. Every $\delta \ddot{g}^*$ -quotient map is $\delta \ddot{g}$ -irresolute.

Proof. Follows from the definition.

Remark 3.23. An $\delta \ddot{g}$ -irresolute map need not be $\delta \ddot{g}^*$ -quotient as the following example shows.

Example 3.24. Let $X = \{a, b, c\}$, $Y = \{p, q, r\}$ with topologies $\tau = \{\phi, \{a\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{q, r\}, Y\}$. Define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = p, f(b) = q and f(c) = r. Then the function f is not $\delta \ddot{g}^*$ -quotient map because $f^{-1}(\{p, q\}) = \{a, b\}$ is $\delta \ddot{g}$ -closed in (X, τ) but $\{p, q\}$ is not closed in (Y, σ) . However f is $\delta \ddot{g}$ -irresolute.

Remark 3.25. The concepts of $\delta \ddot{g}^*$ -quotient and $\delta \ddot{g}$ -quotient maps are independent of each other as shown by the following examples.

Example 3.26. Let $X = \{a, b, c\}, Y = \{p, q, r\}$ with $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{r\}, \{p, r\}, \{q, r\}, Y\}$. Define a map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = p, f(b) = r and f(c) = q. Clearly f is $\delta \ddot{g}^*$ -quotient map but not $\delta \ddot{g}$ -quotient because $f^{-1}(\{p\}) = \{a\}$ is not $\delta \ddot{g}$ -closed in (X, τ) where $\{p\}$ is a closed set in (Y, σ) .

Example 3.27. Let $X = \{a, b, c\}, Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{p\}, Y\}$. Define a map $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = q, f(b) = p and f(c) = r. Clearly f is $\delta \ddot{g}$ -quotient map but not $\delta \ddot{g}^*$ -quotient because $f^{-1}(\{r\}) = \{c\}$ is $\delta \ddot{g}$ -closed in (X, τ) but $\{r\}$ is not closed in (Y, σ) .

4 $\delta \ddot{g}$ -Homeomorphisms

In this section we introduce $\delta \ddot{g}$ -homeomorphism and $\delta \ddot{g}c$ -homeomorphism. We also discuss some of their properties.

Definition 4.1. A bijection map $f : (X, \tau) \to (Y, \sigma)$ is called $\delta \ddot{g}$ -homeomorphism if f is both $\delta \ddot{g}$ -continuous and $\delta \ddot{g}$ -open.

Theorem 4.2. Every $\delta \ddot{g}$ - homeomorphism is gs - homeomorphism.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a $\delta \ddot{g}$ -homeomorphism. Then f is bijective, $\delta \ddot{g}$ -continuous and $\delta \ddot{g}$ -open map. Let V be an closed set in (Y, σ) . Then $f^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X, τ) . Every $\delta \ddot{g}$ -closed set is gs-closed and hence, $f^{-1}(V)$ is gs-closed in (X, τ) . This implies that f is gs-continuous. Let U be an open set in (X, τ) . Then f(U) is $\delta \ddot{g}$ -open in (Y, σ) . This implies f is gs-open map. Hence f is gs-homeomorphism.

Remark 4.3. The following example shows that the converse of the above theorem is not be true in general.

Example 4.4. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{p\}, \{p, r\}, Y\}$. Define a map $f: (X, \tau) \to (Y, \sigma)$ by f(a) = p, f(b) = r and f(c) = q. Clearly f is gs-homeomorphism but f is not $\delta \ddot{g}$ -homeomorphism because $f^{-1}(\{q\}) = \{c\}$ is not a $\delta \ddot{g}$ -closed in (X, τ) where $\{q\}$ is closed in (Y, σ) .

Theorem 4.5. Every $\delta \ddot{g}$ - homeomorphism is g - homeomorphism.

Proof. Follows from the fact that every $\delta \ddot{g}$ - continuous map is g- continuous map and every $\delta \ddot{g}$ -open map is g-open map.

Remark 4.6. The converse of the above theorem is not true in general as shown in the following example.

Example 4.7. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{q\}, \{p, q\}, \{q, r\}, Y\}$. Define a map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = q, f(b) = p and f(c) = r. Then obviously f is a g-homeomorphism but f is not $\delta \ddot{g}$ -homeomorphism because $f^{-1}(\{p\}) = \{b\}$ is not $\delta \ddot{g}$ -closed in (X, τ) where $\{p\}$ is closed in (Y, σ) .

Remark 4.8. Homeomorphism and $\delta \ddot{g}$ -homeomorphism are independent of each other as shown in the following examples.

Example 4.9. Let $X = \{a, b, c\}$; $Y = \{p, q, r\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{p\}, \{r\}, \{p, r\}, \{q, r\}, Y\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = p, f(b) = q and f(c) = r. Then f is $\delta \ddot{g}$ -open and $\delta \ddot{g}$ -continuous. Hence f is a $\delta \ddot{g}$ - homeomorphism. However $f^{-1}(\{p, q\}) = \{a, b\}$ is not closed in (X, τ) where $\{p, q\}$ is closed in (Y, σ) and hence f is not continuous. Therefore f is not a homeomorphism.

Example 4.10. Let $X = \{a, b, c\}$; $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{p\}, \{p, q\}, \{p, r\}, Y\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = q, f(b) = p and f(c) = r. Then f is homeomorphism. The set $\{a, b\}$ is open in (X, τ) but $f(\{a, b\}) = \{p, q\}$ is not $\delta \ddot{g}$ -open in (Y, σ) . This implies that f is not $\delta \ddot{g}$ -open map. Hence f is not a $\delta \ddot{g}$ -homeomorphism.

Theorem 4.11. Every $\delta \hat{g}$ -homeomorphism is $\delta \ddot{g}$ -homeomorphism.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a $\delta \hat{g}$ -homeomorphism. Then f is bijective, $\delta \hat{g}$ -continuous and $\delta \hat{g}$ -open map. Let V be an closed set in (Y, σ) . Then $f^{-1}(V)$ is $\delta \hat{g}$ -closed in (X, τ) . Every $\delta \hat{g}$ -closed set is $\delta \ddot{g}$ closed and hence $f^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X, τ) . This implies that f is $\delta \ddot{g}$ -continuous. Let U be an open set in (X, τ) . Then f(U) is $\delta \hat{g}$ -open in (Y, σ) . Hence f(U) is $\delta \ddot{g}$ -open. This implies f is $\delta \ddot{g}$ -open map. Hence fis $\delta \ddot{g}$ -homeomorphism. \Box

Remark 4.12. The following example shows that the converse of the above theorem is not true in general.

Example 4.13. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{q\}, \{p, r\}, Y\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = p, f(b) = q and f(c) = r. Clearly f is a $\delta \ddot{g}$ -homeomorphism but f is not $\delta \hat{g}$ -homeomorphism because $f^{-1}(\{p, r\}) = \{a, c\}$ is not $\delta \hat{g}$ -closed in (X, τ) where $\{p, r\}$ is closed in (Y, σ) .

Proposition 4.14. For any bijective map $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent.

(i) $f^{-1}: (Y, \sigma) \to (X, \tau)$ is $\delta \ddot{g}$ -continuous map.

(ii) f is an $\delta \ddot{g}$ - open map.

(iii) f is an $\delta \ddot{g}$ - closed map.

Proof. $(i) \Rightarrow (ii)$. Let U be an open set in (X, τ) . Since f^{-1} is $\delta \ddot{g}$ -continuous, $(f^{-1})^{-1}(U) = f(U)$ is $\delta \ddot{g}$ -open in (Y, σ) . Hence f is $\delta \ddot{g}$ -open map.

 $(ii) \Rightarrow (iii)$. Let F be a closed set in (X, τ) . Then F^c is open in (X, τ) . Since f is $\delta \ddot{g}$ -open map, $f(F^c)$ is $\delta \ddot{g}$ -open set in (Y, σ) . But $f(F^c) = (f(F))^c$, $(f(F))^c$ is $\delta \ddot{g}$ -open in (Y, σ) . This implies that f(F) is $\delta \ddot{g}$ -closed in (Y, σ) . Hence f is $\delta \ddot{g}$ -closed map.

 $(iii) \Rightarrow (i)$. Let V be a closed set of (X, τ) . Since f is $\delta \ddot{g}$ -closed map, f(V) is $\delta \ddot{g}$ -closed set in (Y, σ) . That is $(f^{-1})^{-1}(V)$ is $\delta \ddot{g}$ -closed in (Y, σ) . Hence f^{-1} is $\delta \ddot{g}$ -continuous functions.

Theorem 4.15. Let $f: (X, \tau) \to (Y, \sigma)$ be a bijective and $\delta \ddot{g}$ -continuous map. Then the following statements are equivalent.

- (i) f is an $\delta \ddot{g}$ -open map.
- (ii) f is an $\delta \ddot{g}$ homeomorphism.
- (iii) f is an $\delta \ddot{g}$ closed map.

Proof. $(i) \Rightarrow (ii)$. Let f be a $\delta \ddot{g}$ -open map. By hypothesis, f is bijective and $\delta \ddot{g}$ -continuous. Hence f is $\delta \ddot{g}$ -homeomorphism. $(ii) \Rightarrow (iii)$. Let f be a $\delta \ddot{g}$ -homeomorphism. Then f is $\delta \ddot{g}$ -open. By Proposition 4.14, f is $\delta \ddot{g}$ -closed map. $(iii) \Rightarrow (i)$. It is obtained from Proposition 4.14.

Remark 4.16. The composition of two $\delta \ddot{g}$ -homeomorphism need not be $\delta \ddot{g}$ -homeomorphism as the following example shows.

Example 4.17. Let $X = \{a, b, c\} = Y = Z$ with the topologies $\tau = \{\phi, \{a\}, \{b, c\}, X\}, \sigma = \{\phi, \{b\}, \{b, c\}, Y\}$ and

 $\eta = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, Z\}$. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be two identity maps. Then both f and g are $\delta \ddot{g}$ -homeomorphism. The set $\{b, c\}$ is open in (X, τ) but $(g \circ f)(\{b, c\}) = \{b, c\}$ is not $\delta \ddot{g}$ -open in (Z, η) . This implies that $g \circ f$ is not $\delta \ddot{g}$ -open and hence $g \circ f$ is not $\delta \ddot{g}$ -homeomorphism.

Next we introduce the following definition

Definition 4.18. A bijection map $f: (X, \tau) \to (Y, \sigma)$ is said to be $\delta \ddot{g}c$ -homeomorphism if f is $\delta \ddot{g}$ -irresolute and its inverse f^{-1} is $\delta \ddot{g}$ -irresolute.

Remark 4.19. $\delta \ddot{g}c$ -homeomorphism and $\delta \ddot{g}$ -homeomorphisms are independent to each other as shown in the following examples.

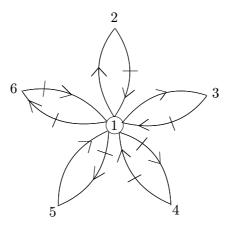
Example 4.20. Let $X = \{a, b, c\} = Y$ with the topologies

 $\tau = \{\phi, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity map. Clearly f is $\delta \ddot{g}$ -homeomorphism. The set $\{a, b\}$ is $\delta \ddot{g}$ -closed in (Y, σ) but $f^{-1}(\{a, b\}) = \{a, b\}$ is not $\delta \ddot{g}$ -closed in (X, τ) . Therefore f is not $\delta \ddot{g}$ -irresolute and hence f is not a $\delta \ddot{g}c$ -homeomorphism.

Example 4.21. Let $X = \{a, b, c\} = Y$ with the topologies

 $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{c\}, \{a, c\}, \{b, c\}, Y\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = c and f(c) = b. Clearly f is $\delta \ddot{g}c$ -homeomorphism. The set $\{a, b\}$ is open in (X, τ) but $f(\{a, b\}) = \{a, c\}$ is not $\delta \ddot{g}$ -open in (Y, σ) . This implies that f is not $\delta \ddot{g}$ -open map. Then f is not $\delta \ddot{g}$ -homeomorphism.

Remark 4.22. From the above discussion we get the following diagram. $A \rightarrow B$ represents A implies B. $A \rightarrow B$ represents A does not implies B.



1. $\delta \ddot{g}$ -Homeomorphism 2. gs-Homeomorphism 3. g-Homeomorphism 4. Homeomorphism 5. $\delta \hat{g}$ -Homeomorphism 6. $\delta \ddot{g}c$ -Homeomorphism

Theorem 4.23. The composition of two $\delta \ddot{g}c$ -homeomorphism is $\delta \ddot{g}c$ -homeomorphism.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be two $\delta \ddot{g}c$ - homeomorphisms. Let F be a $\delta \ddot{g}$ - closed set in (Z, η) . Since g is $\delta \ddot{g}$ -irresolute map, $g^{-1}(F)$ is $\delta \ddot{g}$ - closed in (Y, σ) . Since f is $\delta \ddot{g}$ - irresolute, $f^{-1}(g^{-1}(F))$ is $\delta \ddot{g}$ -closed in (X, τ) . That is $(g \circ f)^{-1}(F)$ is $\delta \ddot{g}$ -closed in (X, τ) . This implies that $g \circ f$ is $\delta \ddot{g}$ -irresolute. Let G be a $\delta \ddot{g}$ -closed in (X, τ) . Since f^{-1} is a $\delta \ddot{g}$ - irresolute, $(f^{-1})^{-1}(G) = f(G)$ is $\delta \ddot{g}$ -closed in (Y, σ) . Since g^{-1} is $\delta \ddot{g}$ -irresolute, $(g^{-1})^{-1}(f(G))$ is $\delta \ddot{g}$ -closed in (Z, η) . That is g(f(G))is $\delta \ddot{g}$ - closed in (Z, η) . Therefore $(g \circ f)(G)$ is $\delta \ddot{g}$ -closed in (Z, η) . This implies that $((g \circ f)^{-1})^{-1}(G)$ is $\delta \ddot{g}$ -closed in (Z, η) . This shows that $(g \circ f)^{-1}$ is $\delta \ddot{g}$ -irresolute. Hence $g \circ f$ is $\delta \ddot{g}$ -closed in (Z, η) . This shows that $(g \circ f)^{-1}$

5 Applications

Definition 5.1. [9] A space (X, τ) is called a $T_{\delta \ddot{g}}$ -space if every $\delta \ddot{g}$ -closed set in it is δ -closed.

Theorem 5.2. Every $\delta \ddot{g}$ -quotient map from $T_{\delta \ddot{g}}$ -space in to another $T_{\delta \ddot{g}}$ -space is a quotient map.

Proof. Suppose $f : (X, \tau) \to (Y, \sigma)$ is a $\delta \ddot{g}$ -quotient map. Let V be a closed set in (Y, σ) . Since f is $\delta \ddot{g}$ -continuous, $f^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X, τ) . Since (X, τ) is $T_{\delta \ddot{g}}$ -space, $f^{-1}(V)$ is closed in (X, τ) . Therefore f

is continuous. Let $V \subset (Y, \sigma)$ and $f^{-1}(V)$ be closed in (X, τ) then V is $\delta \ddot{g}$ -closed in (Y, σ) . Since (Y, σ) is $T_{\delta \ddot{g}}$ -space, V is closed in (Y, σ) . Hence f is quotient map.

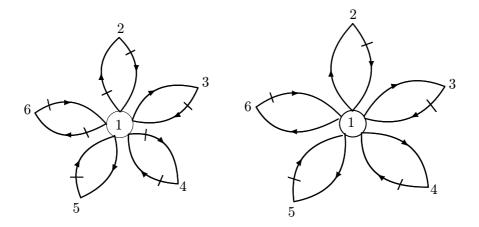
Theorem 5.3. In $T_{\delta \ddot{g}}$ -space, every $\delta \ddot{g}$ -quotient map is δ -quotient.

Proof. Let V be a δ -closed in (Y, σ) . Then V is closed in (Y, σ) . Since f is $\delta \ddot{g}$ -continuous and (X, τ) is $T_{\delta \ddot{g}}$ -space, $f^{-1}(V)$ is δ -closed in (X, τ) . Then $f^{-1}(V)$ -closed in (X, τ) . Since f is $\delta \ddot{g}$ -quotient and (X, τ) is $T_{\delta \ddot{g}}$ -space, V is δ -closed in (Y, σ) . This implies f is δ -quotient map.

Theorem 5.4. In $T_{\delta \ddot{q}}$ -space, every $\delta \ddot{g}$ -quotient map is $\delta \ddot{g}^*$ -quotient.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be $\delta \ddot{g}$ -quotient map. Let V be a $\delta \ddot{g}$ -closed set in (Y, σ) . Since (Y, σ) is $T_{\delta \ddot{g}}$ -space and f is $\delta \ddot{g}$ -quotient, $f^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X, τ) . This shows that f is $\delta \ddot{g}$ -irresolute. Let $f^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X, τ) . Since (X, τ) is $T_{\delta \ddot{g}}$ -space and f is $\delta \ddot{g}$ -quotient, V is $\delta \ddot{g}$ -closed in (Y, σ) . Also since (Y, σ) is $T_{\delta \ddot{g}}$ -space, V is closed in (Y, σ) . Hence f is $\delta \ddot{g}^*$ -quotient map.

Remark 5.5. From the above discussion, Independency of quotient maps are made dependent quotient maps by applying $T_{\delta \ddot{g}}$ -space, seen in the following figures. $A \to B$ represents A implies B. $A \not\rightarrow B$ represents A does not imply B.



1. $\delta \ddot{g}$ -quotient 2. quotient 3. $\delta \hat{g}$ -quotient 4. δ -quotient 5. $\delta \ddot{g}$ -closed 6. $\delta \ddot{g}^*$ -quotient.

Theorem 5.6. Let (Y, σ) be $T_{\delta \ddot{g}}$ -space. If $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ are $\delta \ddot{g}$ -quotient maps. Then their composition $g \circ f : (X, \tau) \to (Z, \eta)$ is a $\delta \ddot{g}$ -quotient map.

Proof. Let V be any closed set in $(Z.\eta)$. Since g is $\delta \ddot{g}$ -quotient map, it is $\delta \ddot{g}$ -continuous. So $g^{-1}(V)$ is $\delta \ddot{g}$ -closed in (Y,σ) . Since (Y,σ) is $T_{\delta \ddot{g}}$ -space, $g^{-1}(V)$ is closed in (Y,σ) . Then $f^{-1}(g^{-1}(V))$ is $\delta \ddot{g}$ -closed in (X,τ) , since f is $\delta \ddot{g}$ -quotient. That is $(g \circ f)^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X,τ) . This implies $g \circ f$ is $\delta \ddot{g}$ -continuous. Also assume that $(g \circ f)^{-1}(V)$ is closed in (X,τ) for $V \subset (Z,\eta)$. That is $f^{-1}(g^{-1}(V))$ is closed in (X,τ) . Since f is $\delta \ddot{g}$ -quotient map, $g^{-1}(V)$ is $\delta \ddot{g}$ -closed in (Y,σ) . Since (Y,σ) is $T_{\delta \ddot{g}}$ -space, $g^{-1}(V)$ is closed in (X,τ) . Hence $g \circ f$ is $\delta \ddot{g}$ -quotient map. \Box

Theorem 5.7. Let (X, τ) be $T_{\delta \ddot{g}}$ -space. If $f : (X, \tau) \to (Y, \sigma)$ is weakly $\delta \ddot{g}$ -closed, surjective and $\delta \ddot{g}$ -irresolute map and $g : (Y, \sigma) \to (Z, \eta)$ is $\delta \ddot{g}^*$ -quotient map. Then $g \circ f : (X, \tau) \to (Z, \eta)$ is $\delta \ddot{g}^*$ -quotient map.

Proof. Let V be an $\delta \ddot{g}$ -closed set in (Z, η) . Since g is $\delta \ddot{g}^*$ -quotient, $g^{-1}(V)$ is $\delta \ddot{g}$ -closed in (Y, σ) . Since f is $\delta \ddot{g}$ -irresolute, $f^{-1}(g^{-1}(V))$ is $\delta \ddot{g}$ -closed in (X, τ) . That is $(g \circ f)^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X, τ) . Hence $(g \circ f)$ is $\delta \ddot{g}$ -irresolute. Let $(g \circ f)^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X, τ) . Then $f^{-1}(g^{-1}(V))$ is $\delta \ddot{g}$ -closed in (X, τ) . Since (X, τ) is $T_{\delta \ddot{g}}$ -space and f is weakly $\delta \ddot{g}$ -closed map, $f(f^{-1}(g^{-1}(V)))$ is $\delta \ddot{g}$ -closed in (Y, σ) . That is $g^{-1}(V)$ is $\delta \ddot{g}$ -closed in (Y, σ) . Since g is $\delta \ddot{g}^*$ -quotient, V is closed in (Z, η) . Thus $g \circ f$ is $\delta \ddot{g}^*$ -quotient map. \Box

Theorem 5.8. Let $f: (X, \tau) \to (Y, \sigma)$ be $\delta \ddot{g}^*$ -quotient and $g: (Y, \sigma) \to (Z, \eta)$ be $\delta \ddot{g}$ -closed, surjective and $\delta \ddot{g}$ -irresolute where (Z, η) is $T_{\delta \ddot{g}}$ -space. Then $g \circ f: (X, \tau) \to (Z, \eta)$ is $\delta \ddot{g}^*$ -quotient map.

Proof. Let V be a $\delta \ddot{g}$ -closed set in (Z, η) . Since g is $\delta \ddot{g}$ -irresolute and f is $\delta \ddot{g}^*$ -quotient, $f^{-1}(g^{-1}(V))$ is $\delta \ddot{g}$ -closed in (X, τ) . That is $(g \circ f)^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X, τ) . Hence $g \circ f$ is $\delta \ddot{g}$ -irresolute. Let $(g \circ f)^{-1}(V)$ be $\delta \ddot{g}$ -closed in (X, τ) . Then $f^{-1}(g^{-1}(V))$ is $\delta \ddot{g}$ -closed in (X, τ) . Since f is $\delta \ddot{g}^*$ -quotient and g is $\delta \ddot{g}$ -closed, $g(g^{-1}(V))$ is $\delta \ddot{g}$ -closed in (Z, η) . That is, V is $\delta \ddot{g}$ -closed in (Z, η) . Since (Z, η) is $T_{\delta \ddot{g}}$ -space, V is closed in (Z, η) . Hence $g \circ f$ is $\delta \ddot{g}^*$ -quotient.

Theorem 5.9. Every $\delta \ddot{g}$ -homeomorphism from a $T_{\delta \ddot{g}}$ -space in to another $T_{\delta \ddot{g}}$ -space is a homeomorphism.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a $\delta \ddot{g}$ -homeomorphism. Then f is bijective, $\delta \ddot{g}$ -open map and $\delta \ddot{g}$ -continuous. Let U be a open set in (X, τ) . Since f is $\delta \ddot{g}$ -open and since (Y, σ) is $T_{\delta \ddot{g}}$ -space, f(U) is open set in (Y, σ) . This implies f is open map. Let V be a closed set in (Y, σ) . Since f is $\delta \ddot{g}$ -continuous and since (X, τ) is $T_{\delta \ddot{g}}$ -space, $f^{-1}(V)$ is closed in (X, τ) . Therefore f is continuous. Hence f is a homeomorphism.

Theorem 5.10. Let (Y, σ) be $T_{\delta \ddot{g}}$ -space. If $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ are $\delta \ddot{g}$ -homeomorphism then $g \circ f$ is a $\delta \ddot{g}$ -homeomorphism.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be two $\delta \ddot{g}$ - homeomorphism. Let U be an open set in (X, τ) . Since f is $\delta \ddot{g}$ -open map, f(U)is $\delta \ddot{g}$ -open in (Y, σ) . Since (Y, σ) is $T_{\delta \ddot{g}}$ -space, f(U) is open in (Y, σ) . Also since g is $\delta \ddot{g}$ -open map, g(f(U)) is $\delta \ddot{g}$ -open in (Z, η) . Hence $g \circ f$ is $\delta \ddot{g}$ -open map. Let V be a closed set in (Z, η) . Since g is $\delta \ddot{g}$ -continuous and since (Y, σ) is $T_{\delta \ddot{g}}$ -space, $g^{-1}(V)$ is closed in (Y, σ) . Since f is $\delta \ddot{g}$ continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\delta \ddot{g}$ -closed set in (X, τ) . That is $g \circ f$ is $\delta \ddot{g}$ -continuous. Hence $g \circ f$ is $\delta \ddot{g}$ -homeomorphism. \Box

Theorem 5.11. Every $\delta \ddot{g}$ -homeomorphism from a $T_{\delta \ddot{g}}$ -space in to another $T_{\delta \ddot{g}}$ -space is a $\delta \ddot{g}$ -homeomorphism.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a $\delta \ddot{g}$ -homeomorphism. Then f is bijective, $\delta \ddot{g}$ -open and $\delta \ddot{g}$ -continuous maps. Let U be an open set (X, τ) . Since f is $\delta \ddot{g}$ -open and since (Y, σ) is $T_{\delta \ddot{g}}$ -space, f(U) is δ -closed. By Theorem 2.7, every δ -closed set is $\delta \ddot{g}$ -closed. Hence f(U) is $\delta \ddot{g}$ -closed in (Y, σ) . This implies that f is $\delta \ddot{g}$ -open. Let V be a closed set in (Y, σ) . Since f is $\delta \ddot{g}$ -continuous and since (X, τ) is $T_{\delta \ddot{g}}$ -space, $f^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X, τ) . Therefore f is $\delta \ddot{g}$ -continuous. Thus f is $\delta \ddot{g}$ -homeomorphism. \Box

Theorem 5.12. Every $\delta \ddot{g}$ -homeomorphism from a $T_{\delta \ddot{g}}$ -space in to another $T_{\delta \ddot{g}}$ -space is a $\delta \ddot{g}c$ -homeomorphism.

Proof. Let $f: (X,\tau) \to (Y,\sigma)$ be a $\delta \ddot{g}$ -homeomorphism. Let U be $\delta \ddot{g}$ closed in (Y,σ) . Since (Y,σ) is $T_{\delta \ddot{g}}$ -space, U is closed in (Y,σ) . Also Since f is $\delta \ddot{g}$ -continuous, $f^{-1}(U)$ is $\delta \ddot{g}$ -closed in (X,τ) . Hence f is $\delta \ddot{g}$ -irresolute map. Let V be $\delta \ddot{g}$ -open in (X,τ) . Since (X,τ) is $T_{\delta \ddot{g}}$ -space, V is open in (X,τ) . Also since f is $\delta \ddot{g}$ -open, f(V) is $\delta \ddot{g}$ -open set in (Y,σ) . That is $(f^{-1})^{-1}(V)$ is $\delta \ddot{g}$ -open in (Y,σ) and hence f^{-1} is $\delta \ddot{g}$ -irresolute. Thus fis $\delta \ddot{g}c$ - homeomorphism.

We shall introduce the group structure of the set of all $\delta \ddot{g}c$ -homeomorphism from a topological space (X, τ) onto itself by $\delta \ddot{g}c$ - $h(X, \tau)$.

Theorem 5.13. The set $\delta \ddot{g}c \cdot h(X, \tau)$ is a group under composition of mappings.

Proof. By Theorem 4.23, $g \circ f \in \delta \ddot{g}c \cdot h(X,\tau)$ for all $f,g \in \delta \ddot{g}c \cdot h(X,\tau)$. We know that the composition of mappings is associative. The identity map belonging to $\delta \ddot{g}c \cdot h(X,\tau)$ acts as the identity element. If $f \in \delta \ddot{g}c \cdot h(X,\tau)$ then $f^{-1} \in \delta \ddot{g}c \cdot h(X,\tau)$ such that $f \circ f^{-1} = f^{-1} \circ f = I$ and so inverse exists for each element of $\delta \ddot{g}c \cdot h(X,\tau)$. Hence $\delta \ddot{g}c \cdot h(X,\tau)$ is a group under the composition of mappings.

Theorem 5.14. Let $f : (X, \tau) \to (Y, \sigma)$ be a $\delta \ddot{g}c$ -homeomorphism. Then f induces an isomorphism from the group $\delta \ddot{g}c \cdot h(X, \tau)$ onto the group $\delta \ddot{g}c \cdot h(Y, \sigma)$. *Proof.* We define a map $f_*: \delta \ddot{g}c \cdot h(X,\tau) \to \delta \ddot{g}c \cdot h(Y,\sigma)$ by $f_*(k) = f \circ k \circ f^{-1}$ for every $k \in \delta \ddot{g}c \cdot h(X,\tau)$. Then f_* is a bijection and also for all $k_1, k_2 \in \delta \ddot{g}c \cdot h(X,\tau), f_*(k_1 \circ k_2) = f \circ (k_1 \circ k_2) \circ f^{-1} = (f \circ k_1 \circ f^{-1}) \circ (f \circ k_2 \circ f^{-1}) = f_*(k_1) \circ f_*(k_2)$. Hence f_* is a homeomorphism and so it is an isomorphism induced by f.

Theorem 5.15. Every $\delta \ddot{g}$ -homeomorphism from a $T_{\delta \ddot{g}}$ -space in to another $T_{\delta \ddot{g}}$ -space is a homeomorphism.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a $\delta \ddot{g}$ -homeomorphism. Then f is bijective, $\delta \ddot{g}$ -open map and $\delta \ddot{g}$ -continuous. Let U be a open set in (X, τ) . Since f is $\delta \ddot{g}$ -open and since (Y, σ) is $T_{\delta \ddot{g}}$ -space, f(U) is open set in (Y, σ) . This implies f is open map. Let V be a closed set in (Y, σ) . Since f is $\delta \ddot{g}$ -continuous and since (X, τ) is $T_{\delta \ddot{g}}$ -space, $f^{-1}(V)$ is closed in (X, τ) . Therefore f is continuous. Hence f is a homeomorphism.

Theorem 5.16. Let (Y, σ) be $T_{\delta \ddot{g}}$ -space. If $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ are $\delta \ddot{g}$ -homeomorphism then $g \circ f$ is a $\delta \ddot{g}$ -homeomorphism.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be two $\delta \ddot{g}$ - homeomorphism. Let U be an open set in (X, τ) . Since f is $\delta \ddot{g}$ -open map, f(U)is $\delta \ddot{g}$ -open in (Y, σ) . Since (Y, σ) is $T_{\delta \ddot{g}}$ -space, f(U) is open in (Y, σ) . Also since g is $\delta \ddot{g}$ -open map, g(f(U)) is $\delta \ddot{g}$ -open in (Z, η) . Hence $g \circ f$ is $\delta \ddot{g}$ -open map. Let V be a closed set in (Z, η) . Since g is $\delta \ddot{g}$ -continuous and since (Y, σ) is $T_{\delta \ddot{g}}$ -space, $g^{-1}(V)$ is closed in (Y, σ) . Since f is $\delta \ddot{g}$ continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\delta \ddot{g}$ -closed set in (X, τ) . That is $g \circ f$ is $\delta \ddot{g}$ -continuous. Hence $g \circ f$ is $\delta \ddot{g}$ -homeomorphism. \Box

Theorem 5.17. Every $\delta \ddot{g}$ -homeomorphism from a $T_{\delta \ddot{g}}$ -space in to another $T_{\delta \ddot{g}}$ -space is a $\delta \ddot{g}$ -homeomorphism.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a $\delta \ddot{g}$ -homeomorphism. Then f is bijective, $\delta \ddot{g}$ -open and $\delta \ddot{g}$ -continuous maps. Let U be an open set (X, τ) . Since f is $\delta \ddot{g}$ -open and since (Y, σ) is $T_{\delta \ddot{g}}$ -space, f(U) is δ -closed. By Proposition 2.7, every δ -closed set is $\delta \ddot{g}$ -closed. Hence f(U) is $\delta \ddot{g}$ -closed in (Y, σ) . This implies that f is $\delta \ddot{g}$ -open. Let V be a closed set in (Y, σ) . Since f is $\delta \ddot{g}$ -continuous and since (X, τ) is $T_{\delta \ddot{g}}$ -space, $f^{-1}(V)$ is $\delta \ddot{g}$ -closed in (X, τ) . Therefore f is $\delta \ddot{g}$ -continuous. Thus f is $\delta \ddot{g}$ -homeomorphism. \Box

Theorem 5.18. Every $\delta \ddot{g}$ -homeomorphism from a $T_{\delta \ddot{g}}$ -space in to another $T_{\delta \ddot{g}}$ -space is a $\delta \ddot{g}c$ -homeomorphism.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a $\delta \ddot{g}$ -homeomorphism. Let U be $\delta \ddot{g}$ closed in (Y, σ) . Since (Y, σ) is $T_{\delta \ddot{g}}$ -space, U is closed in (Y, σ) . Also Since f is $\delta \ddot{g}$ -continuous, $f^{-1}(U)$ is $\delta \ddot{g}$ -closed in (X, τ) . Hence f is $\delta \ddot{g}$ -irresolute map. Let V be $\delta \ddot{g}$ -open in (X, τ) . Since (X, τ) is $T_{\delta \ddot{g}}$ -space, V is open in (X, τ) . Also since f is $\delta \ddot{g}$ -open, f(V) is $\delta \ddot{g}$ -open set in (Y, σ) . That is $(f^{-1})^{-1}(V)$ is $\delta \ddot{g}$ -open in (Y, σ) and hence f^{-1} is $\delta \ddot{g}$ -irresolute. Thus f is $\delta \ddot{g}c$ - homeomorphism.

We shall introduce the group structure of the set of all $\delta \ddot{g}c$ -homeomorphism from a topological space (X, τ) onto itself by $\delta \ddot{g}c$ - $h(X, \tau)$.

Theorem 5.19. The set $\delta \ddot{g}c \cdot h(X, \tau)$ is a group under composition of mappings.

Proof. By Theorem 4.23, $g \circ f \in \delta \ddot{g}c \cdot h(X,\tau)$ for all $f,g \in \delta \ddot{g}c \cdot h(X,\tau)$. We know that the composition of mappings is associative. The identity map belonging to $\delta \ddot{g}c \cdot h(X,\tau)$ acts as the identity element. If $f \in \delta \ddot{g}c \cdot h(X,\tau)$ then $f^{-1} \in \delta \ddot{g}c \cdot h(X,\tau)$ such that $f \circ f^{-1} = f^{-1} \circ f = I$ and so inverse exists for each element of $\delta \ddot{g}c \cdot h(X,\tau)$. Hence $\delta \ddot{g}c \cdot h(X,\tau)$ is a group under the composition of mappings.

Theorem 5.20. Let $f : (X, \tau) \to (Y, \sigma)$ be a $\delta \ddot{g}c$ -homeomorphism. Then f induces an isomorphism from the group $\delta \ddot{g}c$ - $h(X, \tau)$ onto the group $\delta \ddot{g}c$ - $h(Y, \sigma)$.

Proof. We define a map $f_*: \delta \ddot{g}c \cdot h(X,\tau) \to \delta \ddot{g}c \cdot h(Y,\sigma)$ by $f_*(k) = f \circ k \circ f^{-1}$ for every $k \in \delta \ddot{g}c \cdot h(X,\tau)$. Then f_* is a bijection and also for all $k_1, k_2 \in \delta \ddot{g}c \cdot h(X,\tau), f_*(k_1 \circ k_2) = f \circ (k_1 \circ k_2) \circ f^{-1} = (f \circ k_1 \circ f^{-1}) \circ (f \circ k_2 \circ f^{-1}) = f_*(k_1) \circ f_*(k_2)$. Hence f_* is a homeomorphism and so it is an isomorphism induced by f.

References

- Arya.S.P, Nour.T, "Characterizations of S-normal spaces", Indian J.Pure.Appl.Math.,21(8)(1990), 717-719.
- [2] Balachandran, K. ; Sundaram, P. ; Maki, H, " On generalized continuous functions in topological spaces", Mem. Fac. Sci. Kochi Univ. Ser. A Math., 12(1991), 5-13.
- [3] Bhattacharya.P, Lahiri.B.K, "Semi-generalized closed sets in topology", Indian J.Math., 29(1987), 375-382.
- [4] Devi.R, Balachandran.K, Maki.H, "Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces", Indian J. Pure. Appl. Math., 26(1995), 271-284.
- [5] LELLIS THIVAGAR, M. : A note on Quotient mappings, Bull. Malaysian Math. Soc, (Second series) 14(1991), 21-30.
- [6] Lellis Thivagar.M, Meera Devi.B," Notes On Homeomorphisms Via $\delta \hat{g}$ -sets", Journal of Advanced Studies in Topology, Vol.2(1)(2011), 37-43.

- [7] Maki.H, Sundaram.P, Balachandran.K, "On generalized homeomorphisms in topological spaces", Bull.Fukuoka Uni.of Ed part III, 40(1991), 13-21.
- [8] Meera Devi.B., "Investigation of some new class of weak open sets in general Topology" Ph.D., Thesis, Madurai Kamaraj University, Madurai (2012)
- [9] Meera Devi.B, R. Rajasubramaniam ,"New sort of generalized closed sets in topological spaces "Journal of XI' University of Architecture and Technology, Vol. XI, Issue XI, 2020.
- [10] Meera Devi.B., R. Rajasubramaniam,"New type of generalized mappings via $\delta \ddot{g}$ -sets"Malaya Journal of Matematik,",Vol. S, No. 1, 176-180, 2021
- [11] Meera Devi.B., R. Rajasubramaniam,"On $\delta \ddot{g}$ -Closed and Weakly $\delta \ddot{g}$ -Closed Mappings in Topological Spaces" (Communicated)
- [12] Malghan, S.R., "Generalized closed maps", J. Karnatak Univ, Sci., 27(1982), 82-88.
- [13] Noiri, T., "Super-continuity and some strong forms of continuity", Indian J. Pure. Appl Math., 15 (1984), 241-150.
- [14] Ravi.O, Lellis Thivagar.M, Balakrishnan.M, Quotient functions related Ekici's a-open sets, Antarctica Journal of Mathematics, 7(1) (2010), 111-121
- [15] Velicko.N.V, H-closed topological spaces, Amer. Math. Soc. Transl., 78(1968), 103 -118.