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Abstract

The rapid evolution of cyberattacks and the heterogeneity of modern network
environments demand intrusion detection systems (IDS) capable of generaliz-
ing across diverse traffic distributions. This study proposes a hybrid dual-branch
deep learning architecture that integrates CNN- and BiLSTM-based feature
extractors with an attention mechanism, specifically designed for fused multi-
source data. A unified dataset was constructed by combining CICIDS-2017 and
UNSW-NB15, resolving schema mismatches and harmonizing feature semantics
to form a comprehensive representation of contemporary attack behaviors. The
fusion process enriched the statistical temporal characteristics of network flows,
enabling the model to learn invariant signatures across distinct attack fami-
lies. Experimental results show strong performance across all evaluation phases.
The model achieved 96.80% training accuracy and 96.77% validation accu-
racy, demonstrating excellent convergence and minimal overfitting. On unseen
traffic, the architecture achieved 89.88% accuracy and a macro-F1 of 0.8990,
indicating robust generalization across mixed distributions. Class-wise analysis
revealed high reliability for complex attack types such as DoS (0.93 F1), Back-
door (0.91 F1), and Reconnaissance (0.90 F1), while minor challenges arose with
benign reconnaissance overlap. Threshold optimization further stabilized pre-
dictions for minority classes. The model outperforms conventional single-branch
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CNN/LSTM IDS frameworks by exploiting complementary spatial temporal fea-
tures and emphasizing discriminative patterns through attention. Overall, the
proposed fusion-driven hybrid architecture provides a scalable and accurate solu-
tion for unified intrusion detection across heterogeneous network domains. The
results confirm that multi-source feature fusion, combined with a parallel deep
learning pipeline, significantly enhances adaptability, robustness, and detection
capabilities in real-world network security environments.

Keywords: Intrusion Detection System (IDS), Deep Learning, Machine Learning,
Feature-Level Fusion, Industrial Cybernetics

1 Introduction

As networked systems increasingly appear and grow in complexity, as much as the
scale of the Industrial Internet of Things (IIoT), cloud networks, and critical infras-
tructures continue to rise, the issue of cybersecurity becomes a priority[1], [2]. The use
of traditional security mechanisms like firewalls and antivirus systems are not enough
to identify the complex cyberattacks and to implement the Intrusion Detection Sys-
tems (IDS) to be constantly monitored and to perform the proactive mitigation of
threats [3], [4]. IDS are a critical defense line since they examine network traffic, sys-
tem logs and device behavior to determine malicious traffic in real time[l], [5]. They
offer early warning messages, improve forensic analysis and robustness in heteroge-
neous and large-scale industrial settings [6], [7]. Over the years, IDS have undergone
a steep evolution as they have progressed to more complex machine learning (ML)
and deep learning (DL)-based systems[8]. IDS Signature-based IDS identify attacks
by comparing network traffic to known attack signatures, which is highly accurate
when identifying known attacks but has weak ability against zero-day or polymor-
phic attacks[9]. In comparison, anomaly based IDS detects outliers of normal systems
operation on the basis of statistical or heuristic models, thus allowing previously
unknown attacks to be captured, but there is usually a high false-positive rate and
model drift [10]. Specification-based IDS are a hybrid between signature-based and
anomaly-based, and they impose predefined behavioral constraints on systems, and
are especially appropriate in environments with critical infrastructure, such as smart
grids and industrial control systems (ICS) [11].

ML and DL methods have greatly augmented the performance of IDS that enables
dynamic and automatic recognition of sophisticated attack patterns [12]. Decision
trees, random forests, and ensemble models are machine learning algorithms that have
been implemented effectively to identify intrusion in IToT and industrial settings [3],
[13], [14]. ML-based IDS enhance the detection rates but are highly reliant on pow-
erful feature extractors and classifiers because network traffic data is frequently both
high-dimensional, non-homogenous, and disproportionate [15], [16]. The IDS can be
improved in terms of its discriminative power by employing feature-based techniques
that allow distinguishing normal and suspicious behaviors. Neural network models can
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be improved further by the fact that neural networks learn hierarchical representa-
tions in raw network traffic automatically [17]-[19]. CNNs are especially well-suited to
identify the space-related patterns in the network data, which enables one to identify
the regular pattern of the attack signatures [19], [20]. The temporal dependencies are
represented by Recurrent Neural Networks (RNN) such as Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU), which can be used to identify sequential
and multi-step attacks that change with time [15], [21]23]. Such hybrid architectures
as CNN-LSTM are based on spatial and temporal analysis to obtain high detection
rates and low false-positive [12].

Generative methods have also been used, such as Generative Adversarial Networks
(GAN), to augment learning data, solve class imbalance, and enhance the resilience
of IDS [24], [25]. Equally, the models based on transfer learning, like TL-CNN-IDS,
enable the application of knowledge in one network setting to be transferred to a dif-
ferent network setting, eliminating retraining processes and enhancing detection in
novel deployment conditions [26], [27]. They have been particularly useful in IToT,
SDN and cloud network settings, where the problems of heterogeneity and scalability
are currently salient[1], [28], [29]. Multi-feature and data fusion technique application
is another important development in the field of IDS. The idea behind data fusion
is to combine information provided by different sources to increase the accuracy of
detection and decrease false positives and increase resilience [13]. At the feature-level,
fusion is used to produce highly discriminatory features by merging features of mul-
tiple datasets to enhance the performance of ML/DL models[13]. Sensor-level fusion
fuses raw information across two or more monitoring locations to provide coverage and
contextual understanding in sophisticated industrial environments and induces syn-
chronization issues and computational costs [6]. IDS reliability is further enhanced by
decision-level fusion where the results of the various models are combined by means
of majority voting or probabilistic inference [30].

The growing use of IDS in ICS, IToT, and clouds environments highlights the
necessity of real-time, adaptive, and hybrid detection schemes,[6], [17], [28]. ML and
DL-based IDS has the ability to identify the known and unknown threat, minimize the
false alarm and can be deployed in large network [1], [12]. Furthermore, multi-feature
fusion guarantees the ability to use the heterogeneous data sets effectively and can
detect the threats better and offer strong cybersecurity protection [13], [30]. Irrespec-
tive of these improvements, there are still a number of challenges. IDS have to deal with
high-dimensional data, changing attack vectors, and operational complexity of deep
learning models[8], [15]. Although multiple data sources increase the accuracy, they
need selection of features and mechanisms of synchronization so that the redundancy
of information is not acquired and the process becomes efficient. Moreover, adversarial
attacks, zero-day attacks, and insider threats remain a major threat and research is
still needed on more resilient, adaptive, and smart IDS frameworks [31]33]. It is possi-
ble to say that the integration of the ML and the DL approach and the feature-based
and multi-source fusion of the data led to the appearance of the functions of the IDS in
the context of the modern network to a significant extent [1], [13], [30]. CNNs, RNNs,
hybrid, and GANs enable it to detect the spatial, temporal, and complex attack pat-
terns appropriately [17], [20], [24]-[26]. Moreover, feature-level and sensor-level fusion
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system may enhance the credibility of discovery and provide viable solutions to IIoT,
ICS, and cloud-based network [6], [13], [30]. Despite this, high-dimensional data, com-
plex model and dynamic cyber threats research issues remains unsolved, and thus, it
is a good news that more research on scalable, adaptive, and intelligent IDS architec-
tures capable of meeting the demands of the future smart industrial and cyber-physical
world is still being researched [8], [31], [32].

2 Literature Review

Intrusion Detection Systems (IDSs) have become an essential security component of
the present-day networked ecosystem, particularly as cyberattacks are growing in size
and complexity. The conventional IDS designs can no longer withstand the changes
in the dynamic threat environment and are required to incorporate machine learn-
ing (ML), deep learning (DL), and hybrid analytics. The initial background reviews
indicate the relevance of anomaly-based IDS (AIDS) and provide detailed taxonomies
of detection techniques, attack types, datasets and assessment issues [38]. On the
same note, benchmarking studies have pointed out inconsistency in the choice of algo-
rithms, use of outdated datasets, and superficial validation methods and demanded
more organized evaluation methods [37].

Comparative studies of both ML and DL models indicate evident performance
improvements using deep neural networks and feature-learning methods. Rawat et
al. have shown that the use of integrated unsupervised feature extraction and DNNs
shows great results compared to classical ML techniques when evaluated on NSL-
KDD and SDN settings [34]. This is further enhanced by hybrid feature selection
and ensemble learning in which feature reduction and clustering with no supervision
provide significant improvements in detection accuracy at a lower computational cost
[35]. Other models optimized by ANNs show similar footing, with the hyperparameter
search improving the performance of the models on NSL-KDD and CICIDS2017 with
better than 99 percent accuracy [50].

The deep learning methods remain popular in the area of the detection of zero-day
attacks and the increase of the robustness of the models. DL-based IDS systems that
are developed based on UNSW-NB15 are more flexible and more accurate in their
classification capabilities, particularly when they are developed with multi-layered
architectures to learn complex behavioral patterns [40]. Nonetheless, machine learning-
based IDSs can be easily affected by adversarial attacks, which is a widespread security
risk. The use of evolutionary computation and GAN-generated adversarial exam-
ples has demonstrated that ML-based IDSs have serious flaws, which highlights the
necessity to create model enhancements and design more resilient and robust models
[42].

In order to improve the work of IDS, various studies have addressed various ML
classifiers. SVM, DT, RF, and DJ models are fully tested on CICIDS2017 with SVM
demonstrating high accuracy, precision, and recall in most cases [39]. Simultaneously,
hybrid DL systems based on convolutional and recurrent networks (CNN + RNN)
have been shown to perform better in local and temporal feature extraction of traffic
flows. It is important to note that a hybrid CRNN-based IDS scored 98.90 percent on
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CICIDS2018, which indicates that deep hybrid IDS are prevailing in the literature [45].
There are also new problems created by cloud-based security in which false alarms are
high, thus making operations untrustworthy. A hybrid Cu-LSTMGRU architecture
using Pearson correlation-based feature selection is more effective and efficient in cloud
IDS [44].

Further, biometric security research enhances the development of IDS, as it
proposes privacy-saving authentication systems. Multimodal biometrics is secured
by application of post-quantum cryptography and homomorphism encryption that
ensures long-term data protection [51]. Feature level fusion with trained ML classifiers
has been effective in improving multimodal biometric authentication, is even more
resilient to variations in the environment [49].

Spatiotemporal traffic modeling via graph convolutional networks and bidirectional
GRUs is also discussed in recent studies to capture the high-dimensional and correlated
network behavior, which have potential benefits in the next-generation IDS research
[47].

According to the literature review, there are a number of research gaps in the
development of the IDS today. Although the methods of ML and DL have enhanced
the accuracy of detection, most models are still incapable of imbalanced and high-
dimensional data, restraining their extrapolation with different network settings [47].
Also, the adversarial attacks disclose the weaknesses of the existing ML-based IDSs,
which underscores the necessity of resolute and resilient frameworks [42]. Multi-source
data fusion and hybrid architectures are still understudied, especially in cloud, IoT and
critical infrastructure applications [26],[46],[52-57]. Further exploration is also needed
on efficiency in deployment in real-time and optimization of computational efficiency.

3 Proposed Research Methodology

The suggested study presents a new multi source fusion based intrusion detection
model established on a hybrid neural structure of convolutional, recurrent, and atten-
tion networks. The current research, in contrast to the previous studies that use a
single dataset or a traditional set of features, adds a cross-domain harmonized dataset
of intrusions, which is formed by combining CICIDS-2017 and UNSW-NB15 with the
help of an extended feature alignment and semantic mapping pipeline. In addition,
the methodology proposes domain-based feature construction and dual-branch deep
learning framework that collectively learns aggregated and temporal features related
to traffic. In this section, every step of the suggested strategy is formalized.

The suggested piece contains a full cross-dataset semantic feature fusion framework
which balances the heterogeneous network flow features into a single representation,
and thus, allows the effortless incorporation of fundamentally varied datasets of IDS. A
new engineered behavior-sensitive set is created to increase the discriminatory power,
which includes directionality ratios, flow-intensity measures, congestion measures, and
a list of log-transformed statistical measures, which are not present in raw data sources.
The paper also introduces a hybrid SMOTE-ENN and de-duplication based data bal-
ancing system, the first IDS method to implement a three-layer leak-prevention system
and integrates oversampling with non-overlapping and contamination-free training,
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validation, and testing partitions. Based on the enhanced characteristics, a new dual-
branch hybrid deep learning framework is proposed with one branch using Conv1D,
BiLSTM, and an Attention mechanism to model the temporal sequences and the
other branch learning high-level semantic patterns using dense transformations of
aggregated static features. This architectural merger in itself contributes a lot to
generalization in various traffic behaviors. Lastly, the systematic harmonization and
dataset fusion develop a more generalizable IDS dataset that contains both old and
new attack patterns, providing a more reliable alternative to the current single-source
IDS benchmarks, and enhancing practicality in the real world.

3.1 Dataset Description and Rationale for Fusion

The traffic behavior, type of attack, and the philosophy of feature engineering of
CICIDS-2017 and UNSW-NB15 differ radically. CICIDS-2017 allows capturing real-
world high volume attack scenarios under realistic conditions, whereas UNSW-NB15
contains systematic low-level intrusions, which are conducted in a controlled environ-
ment of a cyber-range. Combination of these sets helps to address the bias of the
dataset, increases the diversity of attacks and reduces overfitting to particular behav-
ior patterns in the environment one of the weaknesses of current research on IDS. In
this way, the combination creates a more detailed cyber-threat environment, enhanc-
ing the capability of the downstream model to identify real-life multi-modal attacks
Because of the severe imbalance in CICIDS-2017 in which benign traffic is the most
active with more than 2.27 million flows, downsampling was carried out to main-
tain meaningful distribution with minority attack samples. Fine-grained labels were
grouped into six broader categories to fit UNSW-NB15 taxonomy. CICIDS-2017 had
907,646 harmonized sample inputs after preprocessing. UNSW-NB15 also had overlap-
ping and very rare categories of attack that had the potential of skewing the learning.
The six categories were obtained after the removal of non-informative classes and the
consolidation of the rare ones into the same category as CICIDS-2017. The alignment
facilitated successful feature fusion and homogenous downstream classification.

3.2 Feature Alignment and Semantic Harmonization

A new semantic mapping pipeline was used in order to map both datasets onto the
same feature space. CICIDS attributes were mapped to UNSW counterparts according
to the duration of a flow, the volume of a flow, directionality, and semantics of pack-
ets. Further normalization was done to ensure that both the datasets worked on the
same units (e.g. duration was changed to seconds). This led to a final schema with ten
numeric features and one categorical labelling which could be directly concatenated
without structural inconsistency. Both the harmonized datasets were combined into a
single dataset. The merging presented compatible network behaviors CICIDS brought
in volumetric attacks in modern times, and UNSW stealth attacks such as reconnais-
sance attacks and exploitation. This combination is one of the primary novelties, and
it provides a generalizable intrusion dataset with less bias and greater variety.

In order to build a coherent, cross-dataset intrusion detection system, a stringent
feature matching and semantic balancing measure was adopted. The main goal was to
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homogenize heterogeneous network flow features generated by two radically different
IDS data CICIDS and UNSW-NB15 so that both data sets can play significant roles
in the combined data set. It was done by renaming, reorganization, cleaning, and
statistical harmonization of feature distributions.

The first approach was the choice of a stable sub-set of flow-level attributes that
are semantically equivalent. CICIDS and UNSW have different naming conventions
and measurement formats; therefore, the CICIDs data was directly renamed to be in
the schema of the UNSW. The characteristics in the form of Flow Duration, Forward
Packets, Backward Bytes, Average Segment Sizes, and TCP window were transformed
into a single form: dur, spkts, dpkts, s bytes, dbytes, rate, smean, dmean, swin, dwin.
This standardization guarantees that every feature has the same operational semantics
across datasets, and it does not have ambiguity and can be easily compared.

This was followed by a uniform column format by simply taking the harmonized
set of features out of each dataset. Based on the common list of columns, both of the
datasets were cut with the same schemas and then joined together to create the final
fused datasets. This promoted structural homogeneity, where ensuing deep learning
models are enabled to handle inputs without biases ascertained by the data.

The step of detailed statistical harmonization was then followed, in which the
distributions of every common feature were compared by histograms. The 1 st 99 th
percentile range was used to remove extreme outliers and the invalid values (NaN, Inf)
were cleaned. This was an essential step, because CICIDS and UNSW are very different
in terms of data generation methodology resulting in incompatible numeric scales,
skewness and density distributions. Through the rectification of these discrepancies,
fused dataset will not only achieve cross-dataset stability but also reduce domain shift
and increase generalization of intrusion detection models.

The derivation formalizes the preprocessing pipeline of any one feature by initially
eliminating invalid values like infinities and NaNs, and then narrowing down the rest
of the samples to the range between the 1st percentile and 99th percentile. This is
mathematically equivalent to cleaning and outlier trimming and makes sure that all
datasets have similar distributions of noise-free features to be fused and model trained.

X{gi):{xeXf(li)m;éoo,x#—OQm#NaN}? (1)

)~ {aexy)

P(x) <o < P (X))} 2)

where,
Xy) - X((zi) \ {o0, —00, NaN},
A (Xi(li)) — 1Ist percentile of the feature X,
Poo (Xy)) = 99th percentile of the feature Xc(li)7

X'C(li) = QOutlier-trimmed feature ensuring P; (XC(;)) <z < Py (Xc(li)) . (3)
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Table 1 Aligned Common Features Across CICIDS and UNSW

Unified Feature

CICIDS Original Name

UNSW Original Name

dur
spkts
dpkts
sbytes
dbytes
rate
smean
dmean
swin
dwin
attack_cat

Flow Duration

Total Fwd Packets

Total Backward Packets
Total Length of Fwd Packets
Total Length of Bwd Packets
Flow Packets/s

Avg Fwd Segment Size

Avg Bwd Segment Size
Init_Win_bytes_forward
Init_Win_bytes_backward
Label

dur
spkts
dpkts
sbytes
dbytes
rate
smean
dmean
swin
dwin
attack_cat

Table 2 Semantic Fusion Layer: Combined Feature Interpretation

Unified Feature

Semantic Meaning

Usage in Fusion

dur

spkts / dpkts
sbytes / dbytes
rate

smean / dmean
swin / dwin

Total duration of flow
Directional packet volume
Payload distribution
Packet emission speed
Segment size patterns
TCP window behavior

Baseline temporal intensity
Behavior asymmetry

Traffic burst analysis
Attack activity frequency
Congestion or flow structure
Congestion anomaly cues

Table 3 CICIDS Dataset Statistical Summary

Feature Mean Std Min Max
dur 22.326443 39.04967 -0.000012 120.000000
spkts 6.543184 514.033900 1.000000 218658.000000
dpkts 6.609115 687.080800 0.000000 291260.000000
sbytes 363.996801 6529.805000 0.000000 2866110.000000
dbytes 10229.052435  1551715.000000 0.000000  641001400.000000
rate 84029.867081 284271.900000  -2000000.000000 3000000.000000
smean 40.833114 138.389400 0.000000 5940.857000
dmean 613.383646 912.714000 0.000000 5800.500000
swin 7221.727626 13042.550000 -1.000000 65535.000000
dwin 1118.640460 6183.855000 -1.000000 65535.000000

Table 3 summarizes all statistics of important network-flow attributes in the
CICIDS dataset in a statistical form that includes the mean, deviation and range of
values of these networks-flow attributes. It shows huge deviation in the features of
bytes, packets, and rate, which serves as evidence of highly dynamic traffic behavior

and existence of heavy-tailed patterns applicable in intrusion detection.
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Table 4 UNSW-NB15 Dataset Statistical Summary

Feature Mean Std Min Max
dur 1.304573 5.348192 0.0 59.999999
spkts 23.710268 153.032698 1.0 10646.000000
dpkts 22.625100 130.694400 0.0 11018.000000
sbytes 10372.870061  196537.376456 24.0  14355770.000000
dbytes 16903.631734  171476.804520 0.0 14657530.000000
rate 47316.274710  119889.988299 0.0 1000000.000000
smean 162.622921 231.650628 24.0 1504.000000
dmean 149.395747 266.481097 0.0 1500.000000
swin 172.921642 119.129592 0.0 255.000000
dwin 166.097635 121.508690 0.0 255.000000

The metrics in Table 4 describe the statistics of vital traffic properties in the
UNSW-NB15 dataset. As depicted, the values of attributes like bytes, packets, and
rates are highly diverse, that is, the network activity is heterogeneous. The statistics
help in normalization of data and create strong feature engineering of IDS models.

3.3 Data Preprocessing Framework

The suggested preprocessing framework proposes a set of strict and new pipeline that
would generate a clean, behavior-rich, balanced, and contamination-free dataset that
would be used in the high-fidelity intrusion detection research. It consists of a long
stage of data cleaning and outlier removal, during which invalid or missing values
are imputed based on median statistics to handle the weaknesses of having skewed
or non-Gaussian distributions of network traffic. Percentile based thresholds are used
in outlier removal to remove out of the ordinary noise, without affecting legitimate
attack variation. This gives a stable and steady dataset that can be predictive of
model learning especially when using deep learning designs, which are susceptible to
abnormalities in the distribution of inputs.

Based on this, the framework includes behavior-based feature engineering, which
adds a number of new traffic descriptors which cannot be found in raw datasets. These
are directional byte and packet ratios, which quantify source destination asymmetry,
flow intensity indicators which quantify burstiness, TCP window dynamics which are
used to analyze congestion behavior, and zero-flow anomaly flags which are used to
identify suspicious inactivity patterns. Further, heavy-tailed variables are also trans-
formed to a log-form to standardize interest of a distribution and increase models
sensitivity to subtle differences. These artificial capabilities form a significant con-
tribution of the study and greatly enhance the capabilities of the dataset to detect
subtle attempts of an intrusion that are typically not detected by standard feature
sets. Derivation is formalizing the idea of feature engineering, where ratios, differ-
ences, intensity, and window-based measures are characterized to model bidirectional
flow behavior. Zero-value flags are used to identify abnormal traffic patterns and log-
transforms will address skewed distributions. Such mathematically constructed aspects
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complement the information, enhancing semantic coverage and raising the accuracy
of intrusion detection of various attack types.
Ratio-based Features:

Pmean (4)

s s
pkts byte_ratio = bytes _—
dmean + 1

kt_ratio = —————, _—
P dpk:ts +1 dbytes +1

, size_ratio =

Difference Features:

pkt,dlﬁﬂ = ‘Spk:ts - dpkts|a byte—dlﬁ = ‘Sbytes - dbytes|7 size_diff = |Smean - dmean|

()

Flow Intensity Measures:

total_pkts = spris + dprts, (6)
total_bytes = Spytes + doytes, (7)
total_bytes

bytes_per_pkt = ————
VHeS-Pet-p total_pkts + 1

total_pkts
kts_ = 9
pkts.persec = - == (9)
Window-based Features:
5o
win_ratio = ——~— win_diff = |syin — dwin 10
11 | | (10)

Zero-value Flags:

1, if Swin =0 V dyin =0

win_zero_flag = . (11)

, otherwise

if s =0V dpts =0

zero_pkt_flag = Skt ) phi (12)

0, otherwise

1, if s=0Vd =0

zero_byte flag = ¢ ! Sbyte‘. bytes (13)

0, otherwise

Log-Transformed Features:

log, () =In(1 + ), V€ {dur, Spyies; dbytes, rate} (14)

In order to further narrow-down the dataset, correlation-based pruning is used to
remove redundancy so that all features with correlation coeflicients of +0.85 or greater
are removed. This procedure minimizes multicollinearity, increases interpretability and
minimizes the chances of overfitting so that the learning model concentrates on dis-
tinctive and informative features. This is then followed by the hybrid SMOTE-ENN
approach of class balancing that oversamples the minority classes and undersamples

10
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Edited Nearest Neighbors. This two-pronged approach increases the representation of
minority classes without at the same time adding any noisy samples or samples that
are on the borderline that can damage the stability of the classifier. The outcome is a
balanced dataset which dramatically increases the G1-score of classes of attacks which
were previously poorly represented.

This derivation is used to formalize the process of redundancy detection, where
the features that have a zero variance are identified and the highly correlated features
above a threshold. The upper triangle of the correlation removes redundant predictors
to guarantee that noise and multicollinearity are removed. This increases the stability
of the model, minimises overfitting, and increases interpretability prior to fusion-based
intrusion detection modelling.

Let the dataset be represented as X = {z1,zs,...,2,} with target variable y =
attack_cat. All non-target features form the matrix X,um.

1. Low-Variance Feature Detection:

E—{ﬂ

2. Correlation Matrix Computation:

MMmm>s@ (15)

Cov(fi, f;
C = p(fi ) = | 2L L] (16)
0f:0f;
3. Upper-Triangle Search for Highly Correlated Features:
U=C0o1l (17)
where 1;.; is an indicator mask keeping only entries with i < j.
A feature is flagged as redundant if:
H = {fj i : Uij > 7‘} R 7 =10.85 (18)
Final Redundancy Set:
R=LUH (19)

Lastly, the framework has stringent splitting of datasets and data leakage. Three
stage deduplication operation guarantees zero overlap on training, validation and test
partitions this is a rare quality to performance standards in IDS research, as duplica-
tion based on flows may inflate performance statistics unconsciously. Such stringent
leakage control is rarely used in other existing studies and, therefore, this method-
ological approach is a point to note. Together, the suggested preprocessing pipeline
forms a very reliable and feature-rich and neutral data base that improves the overall
performance of the models and allowed strong and reproducible research of IDS.

11
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3.4 Proposed Hybrid Deep Learning Model Architecture

The proposed intrusion detection model comes up with a strong and creative hybrid
deep learning network that combines convolutional, recurrent and attention-based net-
works and densely connected neural networks. This is the framework that is specifically
tailored to use the enriched fused IDS dataset itself and efficiently tackle the limita-
tions of the heterogeneous traffic behavior, class imbalance, and time and aggregated
feature learning requirements. The model combines two complementary branches; one
that emphasizes on sequential patterns and the other one concentrating on the static
aggregated relationships, making it have a comprehensive insight on network flow
traits that would make it better in detecting various attack vectors.

3.4.1 Input Representation and Feature Scaling

The input features are z-scaled by using StandardScaler to achieve model stability
and successful convergence. This scaling removes inconsistencies in value ranges and
avoids the influence of dominant values of high magnitude attributes. The data is then
rearranged to a three dimensional tensor of the form (batch size, timesteps=1, features)
to allow subsequent use with Conv1D and LSTM layers to be used. This reorganization
is essential as it maintains the alignment of features, even though convolutional and
sequential learning models can be used to locate local and contextual relationships in
the input vector.
Let a mini-batch input be denoted by

BXTxF
X e RP*H x5,

where B is the batch size, T' the number of timesteps and F' the number of features
per timestep. In the implemented model T = 1 (single-step flows), but we keep T
general for derivation.

Each feature is standardized (z-score) so that the network input is

X = Standardize(X).
The network input layer passes X forward.

3.4.2 Dual-Branch Hybrid Design

The architecture introduces a two-branch design that extracts complementary patterns
from the input data.

Branch 1: ConvlD + BiLSTM + Attention (Temporal Feature
Learning)

It is a branch that elicits sequential dependencies and time correlation of network flows.
ConvlD layer consisting of 64 filters and a 1x1 kernel detects the local interactions
between features. MaxPoolinglD is used to stabilize representation but not to make
an important dimensionality reduction. The obtained features are then inputted into

12
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a 128-unit Bidirectional LSTM which processes the sequence forward and backward
to acquire more detailed contextual dependencies. There is then a custom attention

mechanism, where attention weights are given to timesteps that are important,

and

the model is allowed to attend to behaviorally relevant flow attributes. Later, 128 and
64-unit dense layers fine-tune the learned representation and a dropout rate of 0.3

decreases overfitting and improves generalization.

ConvlD (kernel size k =1, N, = 64 filters).

ConvlD with kernel size 1 acts as an affine transform across features at each timestep:

C,=¢(Wg +Dbl9) fort=1,...,T,
where %, € RE, W(©) € RNexF p(©) ¢ RNe and ¢ = ReLU.

MaxPooling1D (pool size 1).

Pool size 1 leaves temporal resolution unchanged:
Pt = Ct-

Bidirectional LSTM (hidden units H = 128, return_sequences=True).

The BiLSTM processes {P;}_; producing forward and backward hidden states:

- -
N, = LSTM, (P, I,_1),  h,=LSTM. (P, h,1).

Concatenate to obtain the sequence of BiLSTM outputs:

h,
H, =

b,

eR¥ =1 T

Attention block (custom).

For each timestep we compute an unnormalized score and normalized attention weight,

then the context vector:

u = tanh(W(“)Ht + b(a)), u; € R,
ss=v u +b® € R,

exp(st) -
Q= Tit, Z ap = ]-7
> r—1 exp(sy) t=1

T
Cc = Zath € RQH.

t=1

(23)

Interpretation: a; is the attention weight for timestep ¢, c¢ is the attention-pooled

representation.

13

PAGE NO: 221



LIBERTE JOURNAL (ISSN:0024-2020) VOLUME 13 ISSUE 12 2025

Dense layers and dropout.

The context c passes through dense transformations with ReLLU and dropout p = 0.3:

z; = g Whe + b)), (24)
21 =d O) zy, (25)

where W) ¢ R128%2H o — ReLLU, d is a Bernoulli mask with Pr(d; = 1)=1-—pand
® denotes element-wise product. During inference an appropriate scaling is applied.
The branchl output:

b1 = WPz, + b)) € RO

Branch 2: Direct Dense Path (Aggregated Feature Modeling)

This branch is the direct capture of global, non-temporal interactions between features.
The flattened input goes through 128 units of dense layer with ReLLU activation and
dropout is used to avoid overfitting. A second dense layer of 64 units permits an
increased degree of abstraction of feature relationships. This direction is a complement
to the temporal one in the fact that it models the static aggregate behavior like volume,
directionality, and intensity of traffic.

Flatten input across time and features:

f = Flatten(X) € R 7.

Two dense layers with dropout produce branch2 output:

g1 = YWOf + b)), (26)
g1 =d og, (27)
by = WWg; + b®) € R, (28)

3.4.3 Feature Fusion and Output Layer

The results of the two branches are combined to give a single high-level representation
which combines both temporal sequences and aggregated behaviors. This combined
information is again synthesized in a post-merge dense layer which has 64 units and
dropout. The resulting classification is obtained after the 6 attack categories, namely,
the Basic, DoS, Reconnaissance, Exploits, Fuzzers, and Backdoor are generated by
a softmax layer. This is trained with the Adam optimizer, categorical crossentropy
loss, class-weighting, and a batch size of 256 and 100 training epochs. The accuracy,
precision, recall, and Fl-score are assessment metrics to guarantee a multifaceted
evaluation of the detection performance based on classes under imbalance.
Concatenate branch outputs:

. [bl cm,

by
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Post-merge dense + dropout:

h=¢gW®m+bb) e R, (29)
h=d"oh. (30)

Final logits and softmax:
0=Wh4bl ¢ RY, ¥y = softmax(o),
where C' is the number of classes.

Loss with Class Weights

Using one-hot ground-truth y € {0,1}¢ and per-class weights w,, the weighted
categorical cross-entropy for a single example:

C
‘C<y7 y) = - Z We Yc 10g(@c)~
c=1

Batch loss is the mean over batch elements.

Optimization: Adam

Let 8 denote the set of all trainable parameters. Adam maintains first and second
moment estimates:

my = Brmy_1 + (1 — B1)VeLy, (31)
v = Bavi—1 + (1 — B2)(VoLyr)?, (32)
~ my N (0

mt:l— {, Ut:ﬁ, (33>

m
9t+1 :et_n\/ﬁ»fi_e
t

Regularization and Metrics

Dropout acts as multiplicative Bernoulli noise during training, and weight decay (if
used) adds A||f]|3 to the loss. Performance is measured using Accuracy, Precision,
Recall and F1 computed over the validation/test sets.

Remarks on the T' = 1 case

When T = 1 the BILSTM and attention reduce to per-sample transformations: the
BiLLSTM still maps the single-step input to a hidden vector and attention degenerates
to a learned projection. The architectural design however preserves the ability to
handle longer sequences if 7' > 1.
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Table 5 Model Hyperparameters and Configuration Details

Parameter

Value / Setting

Notes

Feature Scaling

Input Reshape

Target Encoding

ConvlD filters
MaxPooling1D pool size
BiLSTM units

Attention

Dense Layer 1 (Branch 1)
Dropout (Branch 1)
Dense Layer 2 (Branch 1)
Flatten

Dense Layer 1 (Branch 2)
Dropout (Branch 2)
Dense Layer 2 (Branch 2)
Concatenate

Post-Merge Dense
Post-Merge Dropout
Output Dense Layer
Optimizer

Loss Function

Evaluation Metrics
Epochs

Batch Size

Class Weight

StandardScaler

(samples, 1, features)

One-hot (to_categorical)

64

1

128

Dense + Multiply + Lambda sum
128 units, ReLU

0.3

64 units, ReLU

128 units, ReLU
0.3
64 units, ReLU

64 units, ReLU

0.3

Units = #classes, softmax
Adam

Categorical Crossentropy
Accuracy, Precision, Recall, F1
100

256

{0:5, 1:1, 2:3, 3:6, 4:1, 5:5}

Applied on X_train, X_val, X_test
For ConvlD + LSTM

Number of classes = len(le.classes_)
Kernel size = 1, Activation = ReLLU
No dimensionality reduction
return_sequences=True

Custom attention block

After attention

After Dense layer

Branch output

Directly flatten input

After flatten

After Dense layer

Branch output

Merge branchl + branch2
Post-merge

Post-merge

Classification output

Default learning rate

For multi-class classification
Custom Keras metrics

Total iterations

Number of samples per batch

To handle class imbalance

The configuration details presented in Table 5 describe the entire process of prepro-

cessing, architecture, and training values of the proposed hybrid intrusion detection
model. The table indicates the standardization and re-shape of the features before
they are loaded into the dual-branch network, and then the Conv1D, BiLSTM, Atten-
tion and Dense features are set in detail in the two branches. It also stores the vital
training parameters like optimizer selection, loss function, metrics, classes weights,
epochs and batch size. A combination of these parameters results in reproducibility
and points to the ability of the model to acquire temporal, semantic, and aggregate
feature patterns successfully.

4 Results and Discussion

The developed hybrid multi-branch architecture has been tested on the resulting fused
CICIDS-2017 + UNSW-NB15 dataset, and the obtained results indicate good gen-
eralization capacity in different categories of heterogeneous attacks. The model also
showed a high training accuracy of 96.80 percent, F1 of 96.83 percent, and a low
training loss of 0.2408 during training and the validation accuracy and F1 both were
96.77 percent and 96.80 percent respectively. This small difference between the train-
ing and validation measures corresponds to high regularization and proves that the
attention-based dual-branch feature extractor affects overfitting. This is in contrast
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to the typical CNN-only or LSTM-only IDS models which tend to have a severe drift
when trained on multi-distribution fused datasets.

The model on the test dataset gave 89.88 percent accuracy, 0.9012 preciseness,
0.8970 recall, and 0.8990 F1l-score, which establishes strong results on unseen traf-
fic. Given the fact that the test set is mixed and contains minorities attack types,
the macro-F1 of approximately 90 percent proves novelty and power of the proposed
learning pipeline based on fusion. The results of the individual class-wise perfor-
mance demonstrate a consistent high level of behavior: DoS (0.93 F1), Backdoor (0.91
F1), and Reconnaissance (0.90 F1) were identified with a high degree of reliabil-
ity, which confirms the ability of the model to recognize temporal-statistical features
even of visual-similar attack flows. A marginally less good performance of the Nor-
mal class (0.88 F1) is caused by overlapping traffic patterns with benign-appearing
reconnaissance probes which is often a difficulty in real network IDS research.

The stability of classes was also increased with threshold-tuning. The results of
utilizing adaptive threshold optimization to the validation set showed that the macro-
F1 was 0.90, whereas Normal, Fuzzers, and Exploits classes showed to have a better
balance of false positives and false negatives. This illustrates the significance of prob-
ability calibration in the anomaly detection process of multi-distribution features in
which the boundaries of classes can change when fused datasets are used.

Table 6 overviews the training and validation outcomes of proposed model. The
accuracy and Fl-score are high and almost equal in both stages, which indicates a
high degree of generalization and the low overfitting. The fact that the validation loss
is low, once again confirms the strength of the hybrid architecture over single-branch
deep IDS models.

Table 6 Training and Validation Performance of the
Proposed Hybrid Model

Metric Accuracy Precision Recall Fl-score
Training 0.9680 0.9706 0.9659  0.9683
Validation  0.9677 0.9700 0.9660  0.9680

Training and validation results demonstrate strong con-
vergence and balanced learning.

Table 7 presents the test-set evaluation. The hybrid model attains almost 90 per
cent by all measures, which proves its capacity to generalize between unseen traffic
of both CICIDS-2017 and UNSW-NB15. The precision-recall balance is used to make
sure that the model is not biased towards the attack and benign classes.

Table 8 emphasizes individual performance by class. The majority of the types of
attacks have Fl-scores of greater than 0.88, with DoS, Backdoor, and Reconnaissance
representing the highest detection. There is a slightly low recall of the Normal class
because they overlap with low-volume reconnaissance traffic. These findings indicate
how effectively the hybrid feature extractor can single-handedly detect subtle patterns
of attacks, even with very heterogeneous fused traffic.
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Table 7 Test-Set Evaluation Metrics

Metric Value Interpretation Remark

Accuracy 0.8988  Owverall correctness  High reliability

Precision  0.9012 FP control Stable predictions
Recall 0.8970  FN control Robust detection
Fl-score 0.8990 Harmonic mean Balanced performance

Table 8 Class-wise Performance of the
Proposed Model

Class Precision  Recall F1l-score
Backdoor 0.90 0.92 0.91
DoS 0.93 0.93 0.93
Exploits 0.90 0.87 0.89
Fuzzers 0.85 0.91 0.88
Normal 0.93 0.84 0.88
Reconnaissance  0.88 0.92 0.90

The process of combining the CICIDS-2017 and UNSW-NB15 datasets with the
help of the suggested data-fusion strategy allowed the intrusion detection framework
to improve its generalization power considerably. Commonly, traditional IDS models
which were trained on single-source data may be distributional biased, and may not
exhibit the variety of attacks; but the heterogeneous fusion of network traffic proved
to offer a more realistic and rich source of both modern and legacy attack behaviors.
The fused data by dissolving schema inconsistencies, matching statistical flow repre-
sentations and removing redundant or noisy features allowed the hybrid architecture
to acquire consistent patterns of invariance across a wide variety of settings. The sta-
ble validation accuracy (96.77%) and strong test performance ( 90% macro-F1) of this
model showed that the architecture was able to scale to multi-distribution traffic.

This was further enhanced by the dual-branch CNN-BIiLSTM Attention architec-
ture which harnesses complementary feature space on the basis of fused data. The
convolutional branch learned local flow dependency existing in both datasets, whereas
the recurrent branch learned temporal properties of progressive attack patterns. The
attention mechanism was able to promote discriminability by emphasizing feature
interactions that were cross-dataset features that most strongly predicts the pres-
ence of malicious behavior. Such a collaboration between augmented fused data and
optimized architecture gave powerful class-wise performance, particularly in difficult
attack categories, like Backdoor and Reconnaissance. All in all, the presented fusion-
based architecture depicts a new and efficient method of holistic intrusion detection
on the heterogeneous network domains.
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5 Conclusion

This paper presented a new hybrid multi-branch architecture of intrusion detection
that has the ability to generalize to heterogeneous network conditions. The proposed
framework has solved the problem of distributional bias in single-dataset-trained IDS
models by combining CICIDS-2017 and UNSW-NB15 datasets into a single feature
space. The fusion approach increased the malicious flows with statistical, temporal,
and behavioral variety, which allowed the model to acquire resilient and transferable
attack patterns. The attention-based dual-branch CNN BiLSTM extractor was able
to effectively learn local and long-range temporal dependencies to extract signal of
local flow, achieving high-level discriminability than other single-branch deep learning
networks. The effectiveness of the approach is proven through empirical results. The
close similarity in the F1-scores of 96.80 and 96.77 percent and training and validation
accuracies of 96.80 and 96.77 percent indicate strong convergence and low levels of
overfitting. The test set performance of using 89.88 percentage accuracy and macro-F1
of 0.8990 confirm that the architecture is reliable to predict the unseen fused traffic.
Class-based analysis can also be used to underscore the strength of the model especially
in identifying difficult types of attacks like DoS, Backdoor, and Reconnaissance. The
adaptability of the system in multi-distribution settings was supported by the fact
that threshold calibration enhanced the precision recall balance to complex classes.
Despite the high performance of the proposed system, there are still some potential
directions available to improve the system. To start with, introduction of federated
learning can facilitate decentralized implementation of IDS in distributed networks and
maintain privacy of data. Second, the fusion pipeline should be extended to incorporate
real-time traffic, IoT, or cloud telemetry data so that they can be applied in more
multi-layered infrastructures. Third, studying explainability approaches, like SHAP
or attention heatmaps, could be another way of gaining a deeper understanding of
the attribution of the attack, which would aid SOC analysts decision-making. Also, it
can be further improved by the use of transformer-based encoders or CodeBERT-like
architectures to enhance cross-domain generalization and temporal modeling. Lastly,
an adaptive online-learning module might enable the IDS to keep up with changes in
the threats and decrease concept drift due to dynamic environments.
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