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Abstract

The across the board detection of various and changing cyberattacks has
remained a major challenge to the Intrusion Detection Systems (IDS) especially
in unbalanced and high-dimensional network noises. In order to overcome these
shortcomings, this paper presents a new hybrid scheme of detection that combines
a Residual Multilayer Perceptron (Res-MLP) architecture and the threshold tun-
ing scheme based on the Ant Colony Optimization (ACO). Res-MLP backbone
full optimization Res-MLP backbone also optimizes representational learning
by applying dense nonlinear transformations, residual shortcuts (allow gradi-
ents to flow stable) and Batch Normality with dropout based regularization that
discouraging over-fitting. The upshot of making this formulation is a stronger
model that can be used to represent the manners of behavior of network charac-
ters. To complement the architecture, there exists a mathematical ACO model
which results in the optimization of the class-specific softmax decision threshold
defined on the macro-F1 score as fitness objective. The ACO module combines a
dynamic sampling of the candidate threshold vectors, assesses the performance
of the detectors and continuously modifies the pheromones in order to dynami-
cally converge to optimal boundaries. This increases the ability of the classifier to
differentiate between minority attack classes as well as to achieve higher discrim-
ination in general. The experiments performed on the NSL-KDD dataset show
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that the Res-MLP + ACO framework can significantly enhance detection mea-
sures in comparison with traditional MLPs and fixed-threshold classifiers. The
maximized model has better macro-F1, precision, and recall, especially in cases
of minority and low frequency attack. The mathematical derivations presented
in relation to either the architecture construction or the optimization procedure
will be reproducible and conceptually clear which serves as a further argument
in favor of the validity of the suggested approach.

Keywords: Intrusion Detection System (IDS), Residual MLP (Res-MLP), Ant
Colony Optimization (ACO), Threshold Optimization, Network Security

1 Introduction

The computer networks in the present day are not only vulnerable to more advanced
types of cyber threats but also the Intrusion Detection Systems (IDS) are the keys
to the defense agency against such threats as the correct detection and identification
of various types of attack [1], [2]. Conventional IDS can be binary and only classify
as either normal or malicious activity which is not fine-grained enough in real-world
situations. The multiclass intrusion detection alleviates this weakness by allowing the
identification of certain categories of attacks, e.g., denial-of-service, phishing, malware
or ransomware, and providing actionable intelligence to response to such an incident
[3], [4]. The application of machine learning (ML) algorithms particularly neural net-
works like the Multilayer Perceptron (MLP) can be found everywhere because they
have the power to describe the fundamental characteristics of complex curves using
a high-dimensional data set [5]. Nevertheless, the mainstream MLPs have the dis-
advantage of the vanishing gradient problem and lack of ability to learn worthwhile
features, and all of this can decrease classification performance [6]. MLPs have been
extended to residual learning through skip connections that enable the gradient flow
and enable them to learn more abstract representations [7], [8]. This variation of MLP
design allows greater control in differentiating various types of intrusion, which pos-
itively affected the accuracy of the classification. Also, classification thresholds play
essential roles in establishing limits of a decision; in contrast to their counterparts,
that is, the static thresholds, these thresholds do not adapt flexibly to heterogeneous
attack patterns [9].

In spite of the progress, the IDS have continued to possess certain challenges that
affect them in the following way; high false-positive, low scalability of the newthreats,
and difficulty handling big and complex network data in real-time [10], [11]. False
positives are high and take up a lot of time on the part of the analyst and weaken
the reliability of the system, whereas the static signature based IDS cannot identify
the zero day threats [12]. Complex multistage attacks take advantage of the uncorre-
lated nature of time that can be simply detected using a rule [13]. Machine learning
methods have gained importance, which allows adaptive detection through regulations
of labeling and label-free data [14]. Supervised learning indicates particular types of
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attacks, and unsupervised and reinforcement learning find anomalies and also opti-
mize defense mechanisms [15]. Additional features such as convolutional and recurrent
networks are present in deep learning, which improves the extraction of features on
sequential network traffic [5]. Residual Neural Networks ( ResNets ) are used to deal
with vanishing gradient problems [7], [8] and to enable deep neural networks by using
skip connections to enhance gradient flow, training stability, convergence time, and
learning features. Such mechanisms enable the IDS to match fine high-dimensional
patterns, which enhance the precision of detection and inaccurate alarms.

Although residual MLP also enhances the extraction and representation of fea-
tures, optimization of feature-specific thresholds also affects the decision performance
[9]. Fixed thresholds can be biased as they do not aid in portraying intricate attack
distributions. Another dynamic solution is metaheuristic optimization algorithms like
the Ant Colony Optimization (ACO) algorithm, which repeatedly tries to determine
the optimal thresholds to maximize such metrics as precision, recall, and F1-score
[4], [6]. ACO is used to simulate pheromone-guided search and it successfully isolates
configurations that are high performing in thresholding as well as minimizes false pos-
itives and false negatives. Through the combination of residual MLP architectures and
an extension of the residual frame of ACO threshold refinement, the framework can
improve both the deep feature learning and the calibration of decision boundaries. This
method eliminates the drawbacks of traditional IDS, which provides more multiclasses,
strength, and flexibility. The synergistic approach to the problem enables the specific
recognition of various types of attacks, enhances the effectiveness of response, and
increases the security of the whole network. Later parts introduce dataset, methodol-
ogy, training of the model and evaluation of its performance proving the effectiveness
of such an integrated approach.

2 Literature Review

Intrusion Detection Systems (IDS) remain a cornerstone of cybersecurity, tasked with
identifying malicious network activity and protecting complex digital infrastructures.
The proliferation of Internet of Vehicles (IoV) and Internet of Things (IoT) envi-
ronments has introduced unique challenges, including heterogeneous devices, protocol
diversity, and high-dimensional data streams [16], [17], [22]. Ensemble learning tech-
niques, including stacking, boosting, bagging, and voting, have been widely applied to
enhance multiclass detection capabilities, improve robustness, and reduce false pos-
itives, as demonstrated on datasets like NSL-KDD, CICIDS2017, and UNSW-NB15
[16]. Similarly, hybrid approaches combining deep learning architectures, such as DNN-
LSTM, CNN, Transformer models, and Extreme Gradient Boosting (XGBoost), with
advanced optimization algorithms including Levy flight Grasshopper, Bayesian opti-
mization, and Ant Colony Optimization (ACO), have proven effective for fine-tuning
hyperparameters, mitigating class imbalance, and optimizing decision thresholds [17],
[18], [19], [32].

Addressing class imbalance remains a recurring theme in IDS research. Hybrid
resampling strategies, such as SMOTE, GAN-generated synthetic data, undersam-
pling, and oversampling, integrated with ensemble classifiers, have shown notable
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improvements in minority class detection without degrading majority class perfor-
mance [20], [23], [25], [24]. These methods enable IDS to detect rare attack types,
such as U2R, R2L, and DDoS events, more accurately while maintaining high macro
F1-scores. Studies focusing on industrial IoT (IIoT) networks highlight that deep learn-
ing models, particularly CNNs and Transformers, benefit from data augmentation
and hierarchical architectures to address imbalanced and high-dimensional datasets
[23], [32], [31]. Moreover, explainable AI (XAI) frameworks have been introduced
to enhance interpretability, particularly in multiclass intrusion detection scenarios,
helping security analysts understand model decisions and attack attribution [26].

The integration of nature-inspired metaheuristics, such as ACO, Particle Swarm
Optimization, and Genetic Algorithms, has been widely explored to improve both
model selection and hyperparameter tuning [36]. These algorithms simulate adaptive,
self-organizing behaviors from nature, providing efficient search strategies for opti-
mizing IDS performance under complex, nonlinear conditions. Furthermore, research
demonstrates the advantages of hybrid machine learning pipelines combining feature
selection, dimensionality reduction (e.g., KPCA), and classifier ensembles to max-
imize detection accuracy while minimizing false positives [17], [34], [35]. Decision
tree”based methods, including J48 and its variants, remain popular for their com-
putational efficiency, interpretability, and high accuracy in multiclass settings, with
multi-criteria decision-making techniques like TOPSIS facilitating optimal classifier
selection [39]. Finally, multiclass SVMs and hierarchical IDS frameworks optimized
using metaheuristics have exhibited significant improvements in attack-specific clas-
sification accuracy, computational efficiency, and resilience to evolving threats [40],
[30]. Collectively, these studies underscore the importance of combining deep learn-
ing, ensemble strategies, hybrid optimization, and explainable AI to develop robust,
adaptive, and high-performing IDS solutions capable of addressing contemporary
cybersecurity challenges across IoV, IoT, IIoT, and SDN networks [16][40-45].

3 Methodology

The study employs the NSL-KDD dataset, a system benchmark related to the assess-
ment of intrusion detection systems, to generate and assess both the machine learning
(ML) models and deep learning (DL) models of network attack prediction based on
multi-classification. The dataset consists of labeled network traffic examples, which
are classified based on normal or different types of attacks, 41 features, a label, and a
difficulty measure. The two types of training and testing subsets (KDD Train + and
KDD Test + ) were retrieved, and the column structure was defined to give uniform
data frame organizations to the downstream processes. Partial consolidation was done
to consolid the subsets into one dataset of 148,517 rows and 43 columns. The pro-
cess of feature selection left behind 25 high-impact attributes and deduplication left
behind 3,540 redundant rows leaving behind a final working dataset of 144,977 rows
and 26 columns.

To simplify multiclassy classification, attack labels were categorized into five major
groups which included DoS, Probe, R 2 L, U 2 R, and Normal traffic. Attributes
of categorical types were frequency distributions, such as protocol, service, and flag;
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infrequent frequencies were combined, and coded names were provided to all categor-
ical variables. Numerical variables with skewness values were transformed into log1p,
Boolean type variables were changed into binary and all individuals were standard-
ized using a z-score normalization. To deal with class imbalance, moderate SMOTE
oversampling was made on minority classes in a manner that the integrity of major-
ity classes was maintained. Stratified splitting produced training, validation, and test
sets of 80:10:10 ratio preserving the proportions of the classes.

To benchmark the ML, the Logistic Regression model with balancing weights of
classes and K-Nearest Neighbours (k=5) become applied and the baseline performance
metrics as well as the confusion tables were calculated. There was development of deep
learning residual MLP model, which comprised of dense and residual blocks including
ReLU activations, a batch normalization, and dropouts. (Table 1). The residual con-
nections made identity mapping and allowed more learning in the network without
hardship on its performance. This model was trained on the basis of 100 epochs with
64 default batch size by Adam optimization and sparse categorical cross-entropy loss.
Lastly, Ant Colony Optimization (ACO) was then used to optimize per-class deci-
sion thresholds, which yielded better macro F1-score than default softmax argmax
behavior (Table 2). The metaheuristic iteratively explored threshold vectors, updated
pheromones toward best-performing configurations, and applied a fallback to argmax
if no class exceeded its threshold, enhancing class-specific decision boundaries and
overall classification performance.

3.1 Dataset Description

NSL-KDD data can be found at the web site of the University of New Brunswick (n.d.,
n.p., p. 1) and is a typical reference that measures the intrusion detection systems
(IDS). It solves the restrictions of the original KDD99 dataset by being made in to
labeled network traffic instances which are either normal or an attack, with each record
having 41 features, a label and a difficulty metric. It can be divided into KDD Train+
and KDD Test+ subsets, which makes it convenient and strict in the assessment of
IDS, especially that of DoS, probe, R2L, and U2R attacks; hence, it is popular in
cybersecurity research.

3.2 Data Acquisition and Feature Schema Initialization

The NSL-KDD data has been retrieved and loaded systematically in order to enable
modelling of intrusion detection. Both training and testing (KDD Train+ and KDD
Test+) were downloaded and put locally to preprocess. The column structure was
specified in such a way that it would create regular data frames, which consist of
42 columns, each of them divided into basic features (e.g., duration, protocol type,
service), content features (hot, num failed logins), traffic features (e.g., count, serror
rate), and host-based features (dst host count, dst host srv count). Also, both cases
imply a label with normal or an attack type and a difficulty level to analyze. The
resulting consolidated data were the train and test shapes (125,973, 43) and (22,544,
43), respectively, which is ready to be analyzed structurally.
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3.3 Data Cleaning and Feature Pruning

The training and test subsets of NSL-KDD were merged into one to help in effective
multiclass classification so that the schema of the columns matched in both. The data
set that was created had 148,517 rows and 43 columns. The feature selection process
was done again in order to retain 25 high-impact attributes, which maximized the
performance of the classification, and the target label was added to the process in
order to model it. The deduplication and integrity checks eliminated 3,540 redundant
rows that left 144,977 rows and 26 columns in a clean dataset. This has provided a
strong platform on which downstream intrusion detection analysis can be done by
maintaining the consistency of the data as well as reducing the magnitude of bias and
multicollinearity.

3.4 Label Mapping and Feature Transformation

In order to increase the interpretable nature of the models and their compatibility, the
attack labels of the NSL-KDD dataset were reduced to five broad groups: DoS (Denial
of Service), Probe (Surveillance and Scanning), R2L (Remote to Local Intrusion),
U2R (User to Root Exploits), and Normal traffic. Analysis of categorical features by
frequency showed that there are skewed distributions with TCP carrying most of the
protocol traffic, a small set of core services (HTTP, FTP, SMTP, private ports) exist-
ing and flags being significantly more concentrated in SF and S0. Rare service and
flag levels were combined and all categorical values were coded protocol and flag via
label encoding, and service categories were merged to minimize dimensionality. This
preprocessing enhanced the balance of the classes, the sparsity, as well as made the
multiclass classification harder. To prepare the NSL-KDD dataset in order to form a
strong model training and assessment, numerical and categorical features were trans-
formed in a number of ways. To minimize heavy-tailed distributions and bring the first
volatile to variance stability, skewed numerical characteristics were log-transformed
with log1p. Binary format was used to encode the features that were generated as
Boolean-like and numerically encode the multiclass label. Z-score scaling was applied
to all the features to have a zero mean and unit variance to support distance-based
models and SMOTE interpolation. The minority classes (U2R, R2L) were over sam-
pled moderately with SMOTE (with 20 percent of majority class size) and the overall
integrity of classes was maintained. Lastly, stratified splitting created training, vali-
dation and test sets in the ratios of 80:10:10 and ensured that the fractions of classes
were used fairly.

3.5 Machine Learning Model Development

Multiple machine learning classifiers were used as benchmarks to assess the perfor-
mance of the preprocessed NSL-KDD data on a macro-average basis by metrics of
performance and multiclass religion-of-origin analysis through ROC. Logistic Regres-
sion was trained under balanced class weight to reduce residual class imbalance with
the use of the solver of lbfgs and using one-vs-rest (one-verses-rest) approach to clas-
sify on multiple classes. Also, K-Nearest Neighbours (KNN) was applied with k=5 as
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a simple non-parametric. The evaluation of performance was based on baseline met-
rics and confusion matrices, which presented the information on how well each of the
models classifies the model in all types of attack types and where the detection error
can be reduced.

3.6 Proposed Deep Learning Architecture

A residual multilayer perceptron (MLP) backbone was used to implement a deep
learning framework to conduct multiclass intrusion detection tasks on the NSL-KDD
dataset. The architecture combines dense and residual blocks to learn fine and gross
feature interaction as well as counteracting the decline of deeper networks. The input
layer takes the features of the training set and inputs to the first dense block which
has 256 units of ReLU activation with batch normalization and 0.3 dropout rate
to improve the generalization. This is followed by a residual block of 256 units, in
which the shortcut connection incorporates the input as part of the significant path,
allowing identity mapping and learning the fine details of patterns in the data of a
tabular network. Representations are further refined with a subsequent dense block of
64 units and finally the probability distribution across all classes is predicted to the
output layer with the use of a softmax activation. Adam is used to optimize the model
with a learning rate of 0.001, sparse categorical cross-entropy is the loss function.
Training is conducted in 100 epochs and using a batch size of 64, class weights are
used to counter the imbalanced attack distributions. Residual connections can prove
specifically vital, since they enable deeper networks to continue to perform without
the loss of gradients, better revealing subtle patterns of attacks, and providing strong
classification of multiclassification on high-dimensional features of network traffic.

The equations are a formalization on the internal control of the Res-MLP archi-
tecture, which consists of dense transformation, BatchNorm standardization, dropout
regularization, and residual skip connection. Collectively these formulations constitute
a description of the processes through which feature representations are normalized,
compressed, and stabilized in the course of training. The regularization layers improve
generalization whereas the residual formulation improves gradient flow through iden-
tity mappings. This mathematical framework guarantees a very strong learning and a
good multi-class classification performance.

Let the input feature vector be

x ∈ Rd,

and the model learn a mapping

f : Rd → RC .

The first dense layer computes

h1 = σ (W1x+ b1) , W1 ∈ R256×d, (1)

where σ(·) is the ReLU activation.
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Batch normalization is then applied:

h̃1 =
h1 − µbatch√
σ2
batch + ϵ

γ1 + β1. (2)

Dropout regularization yields:

ĥ1 = m1 ⊙ h̃1, m1 ∼ Bernoulli(1− p). (3)

Define the shortcut connection as:

s = ĥ1. (4)

The residual branch performs:

h2 = σ
(
W2ĥ1 + b2

)
, W2 ∈ R256×256, (5)

h̃2 =
h2 − µ

(2)
batch√

(σ
(2)
batch)

2 + ϵ
γ2 + β2. (6)

ĥ2 = m2 ⊙ h̃2, m2 ∼ Bernoulli(1− p). (7)

The residual addition is:
r = ĥ2 + s. (8)

h3 = σ (W3r+ b3) , W3 ∈ R64×256. (9)

h̃3 =
h3 − µ

(3)
batch√

(σ
(3)
batch)

2 + ϵ
γ3 + β3. (10)

ĥ3 = m3 ⊙ h̃3. (11)

The final classification logits are:

z = W4ĥ3 + b4, W4 ∈ RC×64. (12)

Using softmax, predicted class probabilities are:

ŷc =
exp(zc)

C∑
k=1

exp(zk)

, c = 1, . . . , C. (13)

Table 1 overview of the hyperparameters of the proposed multiclass intrusion detec-
tion residual MLP model. It specifies the configuration of the layers, units, activation
functions, batch normalization, dropout rates, optimizer, loss function, training set-
tings, class weight application and residual connections to enhance the learning process
and avoid degradation.
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Table 1 Hyperparameters of the Residual MLP Model for Multiclass Intrusion
Detection

Component Hyperparameter Value / Description

Input Layer input dim Number of features (from X train.shape[1])
Dense Block 1 Units 256

Activation ReLU
Batch Normalization Applied
Dropout Rate 0.3

Residual Block Units 256 (matches shortcut)
Activation ReLU
Batch Normalization Applied
Dropout Rate 0.3
Residual Connection Add (shortcut + main path)

Dense Block 2 Units 64
Activation ReLU
Batch Normalization Applied
Dropout Rate 0.3

Output Layer Units n classes (number of labels)
Activation Softmax

Optimizer Type Adam
Learning Rate 0.001

Loss Function Type Sparse Categorical Crossentropy
Training Epochs 100

Batch Size 64
Class Weights Computed via compute class weight()

3.7 Ant Colony Optimization for Threshold Tuning

Threshold optimization was implemented using an Ant Colony Optimization (ACO)
metaheuristic to improve multiclass classification performance beyond the default
softmax argmax approach. The ACO algorithm simulates pheromone-guided search,
iteratively exploring per-class threshold vectors to identify configurations that maxi-
mize the macro F1-score. As summarized in Table 2, each iteration was done with 20
ants by 50 iterations where the thresholds were limited between [0.1, 0.9]. The per-
formance of every candidate threshold vector was measured in terms of its macro F1
and pheromone levels were adjusted accordingly to strengthen the most successful set-
tings. Through this form of the iterative process convergence to the optimized per-class
thresholds that improve the separation between minority and majority classes, espe-
cially of importance in imbalanced datasets, can be achieved. The fall back to argmax
is implemented should no class surpass its threshold; prediction continuity is held. All
considered, this approach optimizes the boundary of decisions, better recognizes the
existence of minor patterns of classes, and overall, it is more effective in optimizing
macro F1-score, indicating the applicability of threshold tuning thru metaheuristic in
multiclass intrusion detection.

Given true labels

y = {y1, . . . , yN}, yi ∈ {1, . . . , C},
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Table 2 Ant Colony Optimization Parameters for Threshold Optimization

Parameter Value Description

Ants per Iteration 20 Number of ants exploring threshold vectors per iteration
Iterations 50 Total number of iterations for pheromone-guided search
Threshold Bounds [0.1, 0.9] Minimum and maximum allowable per-class thresholds
Evaluation Metric Macro F1-score Metric used to evaluate threshold performance
Fallback Logic Argmax(probs) Ensures prediction if no class exceeds its threshold
Output Optimized thresholds Final per-class thresholds achieving best macro F1

and predicted class probability vectors

P = {pi}Ni=1, pi = (pi1, pi2, . . . , piC),

the goal is to find per-class thresholds

τ = (τ1, τ2, . . . , τC), 0 < τc < 1,

that maximize the macro-F1 score.
The ACO-adjusted decision function is defined as:

ŷi =


argmax

c
(pic I(pic ≥ τc)) , if

C∑
c=1

I(pic ≥ τc) > 0,

argmax
c

pic, otherwise,

(14)

where I(·) denotes the indicator function.
The global optimization objective becomes:

τ ⋆ = arg max
τ∈(0,1)C

Fmacro
1 (y, ŷ(τ )). (15)

The ACO algorithm initializes pheromones using a uniform distribution:

ϕ(0) = (ϕ
(0)
1 , . . . , ϕ

(0)
C ), ϕ(0)

c = 0.5. (16)

Each ant generates a threshold vector by sampling from a Gaussian distribution
centered at the current pheromone level:

τ̃ (k,j)c = clip
(
N

(
ϕ(k)
c , σ2

)
, 0.1, 0.9

)
, (17)

where σ = 0.1 as used in the implementation.
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This sampling structure parallels bounded-update rules such as:

∥X̃(k)∥2 ≤

p∑
i=1

∥Ỹi(k)∥2 +
q∑

j=1

∥Z̃j(k)∥2

p+ q
, (18)

indicating a constraint-driven iterative update process.
For each ant j at iteration k, the fitness score is computed using:

S(k,j) = Fmacro
1

(
y, ŷ

(
τ̃ (k,j)

))
. (19)

Let the best-performing ant in iteration k be:(
S(k,⋆), τ̃ (k,⋆)

)
= max

j

(
S(k,j), τ̃ (k,j)

)
. (20)

If this score outperforms the global best:

S⋆ ← S(k,⋆),

τ ⋆ ← τ̃ (k,⋆). (21)

The pheromone update is a weighted moving average toward the best ant:

ϕ(k+1)
c =

ϕ
(k)
c + τ̃

(k,⋆)
c

2
. (22)

After K iterations, the final optimized thresholds satisfy:

τ ⋆ = lim
k→K

ϕ(k), (23)

yielding the best achievable macro-F1 score under the ACO search process.
The equations obtained provide a framework of mathematical basis to the ACO-

based threshold optimization mechanism. The formulation provides an analytic repre-
sentation of analytic models of threshold sampling, fitness and pheromone updates, to
understand the iterative and constraint-directed sampling dynamics that are required
to optimality improve the multi-classification decision to be made including overall
macro-F1 in various intrusion detection systems.

4 Results and Discussion

The results section has provided a detailed assessment to the suggested intrusion detec-
tion pipeline, which is a combination of classical machine learning programs, deep
learning-based Residual MLP architecture and metaheuristic threshold-optimization
scheme. The benchmarking baseline classifiers (Logistic regression and K-Nearest
Neighbours) are used to kick off the analysis process to determine the baseline per-
formance trends based on accuracy, precision, recall, and F1-score. These paradigms
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give a very fundamental benchmark against which more sophisticated methods can be
evaluated. The Residual MLP model is then analyzed and shows significant improve-
ment in performance due to its more representative ability, residual skip connectivity,
and the training of a class-weight-aware model. Extending on it, Ant Colony Opti-
mization (ACO) is used to adjust the thresholds used in the classification with respect
to the classes, which leads to further results in classification balance and strength.
The optimized model has the best macro-level measures, especially F1-score, which
demonstrates the importance of refining the threshold in multiclass intrusion detec-
tion. At a glance, the outcomes depict an apparent performance flow an initial level
of ML results to deep learning and, finally, to metaphorically better decision logic.
Such systematic analysis not only confirms the efficacy of every component however
it also indicates the addition value of combining complex learning systems with clever
threshold maximization towards attainment of state of art IDS work.

4.1 Performance of Machine Learning Models

The evaluation of baseline machine learning models on the NSL-KDD dataset high-
lights notable differences in performance across classifiers. Logistic Regression achieved
an accuracy of 87.62%, with a precision of 81.39%, recall of 90.10%, and an F1-score
of 84.79% (Table 3). These findings show that although the model is able to detect
most of the attacks, it has moderate misclassification and especially in precision which
represents the false positives in some attacks. By comparison, K-Nearest Neighbours
(KNN) model in its original form recorded significantly better results 99.04 percent
accuracy, 98.13 percent precision, 99.18 percent recall, and 98.64 percent F1-score.
The high recall and F1-score bore out the observation that KNN is very effective in
capturing minority attack classes probably because it is not parametric and sensitive
to local feature distribution. When comparing KNN to Logistic Regression, it is possi-
ble to find that KNN has higher results in terms of all metrics, and the strong base of
multi-class intrusion detection is established. Those results support the significance of
the algorithm choice and influence of the class imbalance treatment. Although Logis-
tic Regression offers interpretable coefficients and insight into the baseline, KNN has
a better predictive performance as it may be used as the standard to compare more
sophisticated deep learning models and classifiers with thresholds in further research
works.

Table 3 Performance Metrics of Machine Learning Models on NSL-KDD Dataset

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

Logistic Regression 87.62 81.39 90.10 84.79
K-Nearest Neighbours (KNN) 99.04 98.13 99.18 98.64
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4.2 Deep Learning Performance Analysis

The evaluation of the Res-MLP model demonstrates its strong capability in handling
complex classification tasks, outperforming conventional machine-learning baselines.
As shown in Table 4, the model has a volume of 98.76% and this means that overall
prediction is quite reliable. Its specificity of 97.34 percent indicates the model accuracy
in reducing false positives which is paramount when the model is used in intrusion
detection where untrue notifications may result in inefficiencies in its operations. The
score of 99.28 percentage recall indicates high sensitivity, which makes the importance
of the model near to detecting construction of all true attack cases. The F1-score
of 98.28% proves that Res-MLP has a strong balance bet between the precision and
the recall and therefore it is strong even when the class distribution is not the same.
All these measures put the same picture the residual relationships and multi-layer
perceptron architecture statistically improved pattern extractions and generalization.
All in all, Res-MLP performs almost optimally, and it is therefore very appropriate in
high-fidelity cybersecurity detection pipelines.

Table 4 Performance of Res-MLP Model

Model Accuracy Precision Recall F1-Score
Res-MLP 98.76 97.34 99.28 98.28

All the figures given demonstrate the better performance of the proposed classi-
fication model. The confusion matrix (Fig. 1) has a high diagonal dominance, which
means the very precise predictions after the threshold optimization based on ACO.
Validation and accuracy and loss curves of the training. (Fig. 2) exhibit steady conver-
gence, with accuracy approaching 0.99 and loss decreasing consistently. Precision-recall
curves (Fig. 3) remain close to 1.0 across all classes, confirming minimal false positives
and excellent class separability. Similarly, ROC curves (Fig. 4) check the discrimi-
native power of the model, its individual class AUCs are more than 0.99, and the
macro-AUC is 0.995. All these visuals collectively support the robustness of the model,
generalization ability, and consistency of the model in a variety of an evaluation
measurement.
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Fig. 1 Confusion matrix of the Res-MLP model after ACO-based threshold optimization, showing
strong diagonal dominance and accurate multiclass predictions.

Fig. 2 Training and validation accuracy and loss curves demonstrating convergence of the Res-MLP
model, with accuracy approaching 0.99 and steadily decreasing loss.
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Fig. 3 Precision-recall curves for all classes after ACO threshold optimization, indicating minimal
false positives and strong class separation.

Fig. 4 ROC curves for each class with AUCs above 0.99 and macro-AUC of 0.995, demonstrating
excellent class discrimination.
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4.3 Optimized Outcomes of DL+ACO

The Post-ACO optimized Res-MLP model demonstrates a further enhancement in
classification performance compared to its pre-optimization version. As presented in
Table 5, the model has better accuracy of 99.15% which demonstrates a large correc-
tion gain in overall prediction accuracy. The accuracy score increases to 98.35 percent
which means that the false-positive rates are decreased and the confidence to predict
positive classes increases. The recall is also very high at 99.30% and this indicates
that the model still manages to retain almost all instances of true positive even when
thresholds are adjusted. The result of F1-score of 98.82 per cent is to ensure that the
Ant Colony Optimization (ACO) process was effective in optimizing the threshold-
based decision values per class in order to give a more balanced and discriminative
result line. The gains as compared to the baseline Res-MLP scores highlight the effi-
cacy of ACO in fine-tuning thresholds to gain on macro-level evaluation metrics. On
the whole, the Post-ACO Res-MLP model can be considered a very accurate and sta-
ble system that can be effectively applied to intrusion detection problems in the real
world.

Table 5 Post-ACO Optimization Performance of Res-MLP Model

Model Accuracy Precision Recall F1-Score
Res-MLP (Post ACO Optimization) 99.15 98.35 99.30 98.82

The proposed Res-MLP and its Post-ACO optimized version outperform many
recent intrusion detection models by offering superior balance across accuracy, pre-
cision, recall, and F1-score. As shown Table 5, Even further threshold optimization
provides a better quality of decisions that lessen misclassification on challenging
classes. The strengths of the pipeline are high feature learning, threshold refinement
and high macro-level performance. Its shortcomings are, however, that its computa-
tional cost during ACO iterations is moderate, and it may be sensitive to threshold
ranges or hyperparameters. In spite of these limitations, the pipeline could offer a
effective and scalable basis to more recent IDS applications, more so than simple ML
models.

5 Conclusion

This paper contained a systematic and technically based research into how the perfor-
mance of intrusion detection could be enhanced by an optimized hybrid architecture
using a backbone based upon a Residual Multilayer Perceptron (Res-MLP), and a
threshold optimization framework based on the Ant Colony Optimization framework.
Res-MLP architecture proposed, proved to be effective due to the combination of deep
hierarchical feature transformations with residual skip connections, BatchNorm sta-
bilization as well as dropout regularization, which finally allowed to achieve a more
efficient propagation of the gradient, lower overfitting, and better generalization. The
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theoretical basis of every architectural element was clearly defined through the math-
ematical formulae that were used in the present work thus adding transparency and
reusability to future studies. Simultaneously, a threshold optimization module used
to dynamically decide class-specific decision boundaries was based on the macro-F1
metric with ACO. This was an efficient search mechanism based on probabilistic
exploration of continuous threshold space and finding optimal solutions especially in
imbalanced multiclass problems like network intrusion data sets like NSL-KDD. The
equations derived describing how pheromone updates, stochastic sampling, and fit-
ness evaluation created additional support to the soundness of the methodology of
the optimization process. The experimental results confirmed that counterpointing the
Res-MLP backbone with ACO-based threshold adjustment worked much better than
the baseline models and fixed-threshold approaches. Importantly, the increase in the
recall of minority-class and macro-F1 shows the prospects of the framework to iden-
tify latent attack patterns that are mostly ignored by conventional learning methods.
Combined buildings of the architecture have been tested to be validated by both the-
oretical derivations as well as empirical evidence that prove in the view that the joint
array is a robust, and scalable and adaptive intrusion detection pipeline. In general,
the given work provides a solution with a solid mathematic, computationally efficient,
and practically implementable solution to the current cybersecurity set-ups. Future
research can apply this technique to larger and more practical datasets, ensemble
models, the case of federated learning, and adaptive online learning algorithms. These
instructions have a potential of enhancing the autonomous threat detection ability in
developing network ecosystems.
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