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Abstract 

The square  sum  degree  divided  by  diameter  matrix  SSD (G)  of  a 
d2+d2 

graph G is a square matrix whose (i,j)th entry is  i j
 whenever i /= j 

and otherwise zero.  where di, dj  is the degree of ith  and jth  vertex of G. 

In this paper, we define square sum degree divided by diameter energy 

E SSD (G) as sum of absolute eigenvalues of SSD (G) . Also obtained 
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1 Introduction 

The basics idea of graph theory were born in 1736 with Eulers paper in which 

he solved the Konigsberg bridge problem.In the last decades graph theory 

has established itself as a worthwhile mathematical disciplines and there are 

many applications of graph theory to a wide variety of subjects which include 

operation research, Physics, Chemistry, Economics, Genetics, Sociology, Engi- 

neering etc. We can associate several matrices which record information about 

2Corresponding author:kavitapermi@presidencyuniversity.in 
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vertices and how they interconnected. That is we can given an algebraic struc- 

ture to every graph.Many interesting result can be proved about graphs using 

matrices and other algebraic properties. The main use of algebraic structure is 

that we can translate properties of graphs into algebraic properties and then 

using the results and methods of algebra, to deduce theorems about graphs. 

We mainly concendrate on energy of graphs which was introduced by I.Gutman 

in 1978[5].which is having direct connection with total π -electron energy of a 

molecule in the quantum chemistry as calculated with the Huckel molecular 

orbital method. Recently several results on energy related with matrices deal- 

ing with degree of vertices and distance between vertices have been studied 

such as distance energy[7, 9], degree sum energy [6], degree exponent energy 

[11, 10], degree exponent sum energy [8, 3], degree square sum energy[2, 1, 4] 

etc. In continuation with this, in order to upgrade, we now introduce concept 

of degree square sum distance square energy of connected graph. The purpose 

of this paper is to compute square sum degree divided by diameter matrix 

denoted by SSDDD(G). 

 

 

2 Square sum degree divided by diameter ma- 

trix and its energy 

Let G be a connected graph of order n with vertex set V (G) = (v1, v2, ..., vn).We 

denote by d(vi) as the degree of a vertex vi which is the number of edges 

incident on it and the distance between two vertices vi and vj as dij ,the 

length of the shortest path joining them. Motivated from previous research, 

we now define the degree Square sum degree divided by diameter matrix of a 

connected graph G as, 
 

( 
d2+d2 

 

 

 

if there is a path between v 

 

and v 

 

 

The square sum degree divided by diameter matrix is a symmetric matrix 

with eigen values as ψ1 ≥ ψ2 ≥ ψ3 ≥ ............ ≥ ψp. 

The characteristic polynomial of SSD (G) is given by det|ψI − SSD (G)|. 
The Square sum degree divided by diameter energy of the graph G is defined 

as sum of absolute values of ψi, i = 1, 2, ....... , p. 

 

E 
SD 
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3 Properties of Square sum degree divided by 

diameter energy 

Theorem 3.1. If eigen values of  SSD (G) are ψ+ > ψ+ > · · · > ψ+, then 
 

p 

1. ψi = 0 and 

i=1 

Σ Σ  
d2 + d2  

 2
 

Σ  
d2 + d2  

 2
 

 

 

Proof. (1) Since the diagonal entries are zero the sum of leading diagonal 

entries of SSD (G) is zero . 
p 

Hence ψi = 0. 

i=1 

(2) The sum of squares of latent roots of SSD (G) is the sum of latent roots of 

[ SSD (G)]2, 
n p n 
Σ 

ψ2 = 
Σ Σ 

uij uji 

i=1 i=1 j=1 

= 0 + 2 (uij)2 
i<j 

Σ  
d2 + d2  

 2
 

 
i=1 = 2Φ. 

diam(G) 

Theorem 3.2. If c0, c1 and c2 are the first three coefficients of characteristic 

polynomial of SSD (G) matrix, then 
 

1. c0 = 1, 

 

2. c1 = 0 and 

3. c2 = −Φ . 

Proof. (i)By definition, Γ(ψ, x) = det[ψI − Φ]. 
Therefore c0 = 1. 

(ii) c1 = (−1)1 × trace(Γ) = −1 × 0 = 0. 

2. = 2Φ 

i=1 
diam(G) 

where Φ = .

= 2 
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(iii) By definition c2 = 
Σ

 |uii uij| 
= 

Σ 

 

 
 

(aii 

 

 
 
ujj 

 

— uij 

 

 
 
uji) 

1≤i<j≤p 
|uji ujj | 1≤i<j≤p 

= 

1≤i<j≤p 

uiiujj − 
1≤i<j≤p 

ij = 0 − Φ = −Φ . 

 

 

 

We have the following bounds for SSD (G) using McClelland’s inequalities. 

 

Theorem 3.3. Let G be a graph with p vertices, then the upper bound for 
SSD (G) is 

 

E 
SSD 

(G) 2pΦ. 

diam 

Proof. Let ψ1 ≥ ψ2 ≥ · · · ≥ ψp be the eigen values of  SD (G), then by Using 

Cauchy-Schwarz inequality we have, 
 

p 
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uivi ≤ 
p 

2 

i 

i=1 

p 

2 

i 
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Choose ui = 1, vi = .ψi
. and by Theorem 3.1 
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 .  +.2

#
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.ψi 
. = p ψi 
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E(G) ≤ p2Φ. 
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E 
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We present the following lower bounds for E
  

SSD (G)
  

. 

Theorem 3.4.  Let G be a graph with p vertices.  If τ  = .det SSD (G). of G, 
 

 

then the lower bound is 
E
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q

2Φ + p(p − 1)τ 
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Proof. By definition we have, 
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Theorem 3.5. Let ri and si, 1 ≤ i ≤ p be positive real numbers with M1 = 

max1≤i≤p(ri), M2 = max1≤i≤p(si), m1 = min1≤i≤p(ri),  m2  =  min1≤i≤n(si) 

then by theorem 90 of [?] 

Σ 
r2 
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M
 
   1M2  
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i  i 
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Theorem 3.6. For a graph G with p vertices let |ψ1| and |ψp| are the maximum 

and  minimum  eigen  values  among  all  |ψi|Js  of  SSD (G)  respectively,  then  we 

have 

E 

  
SSD 

(G)

   

≥ 
√

8pΦ|ψ1||ψn| 
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Proof. Consider a graph G with p vertices let |ψ1| and |ψp| are the maximum 

and minimum eigen values among all |ψi|Js of   SD  (G) respectively. 

From theorem 3.5, 

Σ 
r2 
Σ 

s2 ≤ 1 
"r

M
 
   1M2  

+
 

 

r
 m1m2 

#2 "
Σp

 2 

r s . 
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i i 4 
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i  i 

i=1 

Let ri = 1, si = |ζi|, M1M2 = |ψi|, m1m2 = |ψp| then 

Σ 
12 
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 2 
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Theorem 3.7. Let ri and si, 1 ≤ i ≤ n be non negative real numbers 

with M1 = max1≤i≤n(ri), M2 = max1≤i≤n(si), m1 = min1≤i≤n(ri), m2 = 

min1≤i≤n(si) then by theorem 3.1 of 
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Theorem 3.8. For a graph G with p vertices, we have 

  
SD 

r 
p2 

2
 

 

 

 

Proof. Consider a graph G with p vertices let |ψ1| and |ψp| are the maximum 

and minimum eigen values among all |ψi|Js of  SSD (G) respectively. 

From theorem 3.7, 
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Let ri = 1, si = |ψi|, M1M2 = |ψi|, m1m2 = |ψp|, then 

Σ

i=1 

From theorem 3.1 

12 

i=1 

ψ2 − 
p 

i=1 

2 

1|ψi| ≤ 
2 
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Theorem 3.9. Let ri and si, 1 ≤ i ≤ p be positive real numbers, then by [13] 

p p p 

|p 
Σ 
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Σ 

ri 
Σ 
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and minimum eigen values among all |ψi|Js of  SSD (G) respectively. 

From theorem 3.9, 
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4 Square sum degree divided by diameter ma- 

trix and its energy for standard graphs 

Theorem 4.1. Let Kp be a complete graph with p vertices, then 

E

  
SSD 

(K )

  

= 2p3 + 12p2 − 82p + 116. 
 

Proof. The complete graph Kp with p-vertices have their square sum degree 

by diameter matrix as follows 
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Its characteristic polynomial is, 

[ψ − (18p2 − 88p + 118)] [ψ − (−(2p2 − 4p + 2))](p−1) = 0. 
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Theorem 4.2. Let S0, p ≥ 3 be a crown graph with 2p vertices, then 
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Its characteristic polynomial is 

3 
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Theorem 4.3. Let Kp×2 be a cocktail party graph with 2p vertices, then 
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Proof. The cocktail party graph Kp×2 with 2p-vertices has it’s square sum 
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= 8p3 + 56p2 − 344p + 472. 
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Theorem 4.5. Let Fp be a Friendship graph with p vertices, then 
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 i 
[ψ + (4)]2p−1 = 0 

Spectra

  
SSD 

(F )

   

= 
 

 
 

(8p − 4) + 9760p2 − 40544p + 43792 (8p − 4) − 9760p2 − 40544p + 43792 4 

− 
Therefore, E

 
SSD (Fp)

  
= 

 

(8p − 4) + 
√

9760p2 − 40544p + 43792 1+ (8p − 4) − 
√

9760p2 − 40544p + 43792 1+ 4 (2p−

= 
√

9760p2 − 40544p + 43792 + 4(2p − 1). 
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